当前位置: X-MOL 学术ACS Synth. Biol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Activation of Protein Expression in Electroactive Biofilms.
ACS Synthetic Biology ( IF 3.7 ) Pub Date : 2020-07-28 , DOI: 10.1021/acssynbio.0c00278
Daniel A Phillips 1 , Lina J Bird 2 , Brian J Eddie 2 , Matthew D Yates 2 , Leonard M Tender 2 , Christopher A Voigt 3 , Sarah M Glaven 2
Affiliation  

Microbes that form biofilms on electrodes and generate electrical current responses could be integrated into devices to perform sensing, conduct signals, or act as living microprocessors. A challenge in working with these species is the ability to visualize biofilm formation and protein expression in real-time while also measuring current, which is not possible with typical bio-electrochemical reactors. Here, we present a three-dimensional-printed flow cell for simultaneous electrochemistry and fluorescence imaging. Current-producing biofilms of Marinobacter atlanticus constitutively expressing green fluorescent protein were grown on the flow cell working electrode. Increasing current corresponded with increasing surface coverage and was comparable to biofilms grown in typical stirred-batch reactors. An isopropyl β-d-1-thiogalactopyranoside (IPTG) inducible system driving yellow fluorescent protein was used to assess the spatiotemporal activation of protein expression within the biofilm at different stages of growth and induction dynamics. The response time ranged from 30 min to 5 h, depending on the conditions. These data demonstrate that the electrochemical flow cell can evaluate the performance of an electrically active environmental bacterium under conditions relevant for development as a living electronic sensor.

中文翻译:

电活性生物膜中蛋白质表达的激活。

可以在电极上形成生物膜并产生电流响应的微生物可以集成到设备中,以执行传感,传导信号或充当活体微处理器。处理这些物种的挑战是能够实时可视化生物膜形成和蛋白质表达,同时还能测量电流,这是典型的生物电化学反应器无法实现的。在这里,我们提出了同时进行电化学和荧光成像的三维打印的流通池。大西洋马林杆菌的当前生物膜组成型表达绿色荧光蛋白生长在流通池工作电极上。电流的增加与表面覆盖率的增加相对应,并且与典型的间歇式反应器中生长的生物膜相当。使用驱动黄色荧光蛋白的异丙基β- d -1-硫代半乳糖吡喃糖苷(IPTG)诱导系统评估生长和诱导动力学不同阶段生物膜内蛋白质表达的时空激活。响应时间从30分钟到5小时不等,具体取决于条件。这些数据表明,电化学流动池可以在与开发为活电子传感器相关的条件下评估电活性环境细菌的性能。
更新日期:2020-08-21
down
wechat
bug