当前位置: X-MOL 学术Adv. Energy Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Toward Higher Voltage Solid‐State Batteries by Metastability and Kinetic Stability Design
Advanced Energy Materials ( IF 24.4 ) Pub Date : 2020-07-29 , DOI: 10.1002/aenm.202001569
Luhan Ye 1 , William Fitzhugh 1 , Eva Gil‐González 1 , Yichao Wang 1 , Yibo Su 1 , Haoqing Su 1 , Tianyu Qiao 1 , Lu Ma 2 , Hua Zhou 3 , Enyuan Hu 4 , Xin Li 1
Affiliation  

The energy density of battery systems is limited largely by the electrochemical window of the electrolyte. Herein, the combined thermodynamic and kinetic effects of mechanically induced metastability are shown to greatly widen the operational voltage window of solid‐state batteries based on ceramic‐sulfide electrolytes. Solid electrolyte voltage stability up to 10 V is achieved with minimal degradation, far beyond the capability of organic liquid electrolytes. Furthermore, combined experiment, ab initio computation, and theoretical modeling identify the nature of mechanically constrained Li10GeP2S12 decomposition both within the bulk and at interfaces with cathode materials at very high voltages. Previously unclear kinetic processes are identified that, when properly implemented, can potentially allow solid‐state full cells with remarkably high operational voltages.

中文翻译:

通过亚稳态和动力学稳定性设计迈向更高电压的固态电池

电池系统的能量密度在很大程度上受到电解质的电化学窗口的限制。在这里,机械诱导的亚稳态的热力学和动力学的综合作用显示出大大拓宽了基于陶瓷硫化物电解质的固态电池的工作电压范围。固体电解质的电压稳定性达到10 V,并且降级最小,远远超出了有机液体电解质的能力。此外,结合实验,从头算和理论建模确定了机械约束的Li 10 GeP 2 S 12的性质在非常高的电压下,在主体内以及与阴极材料的界面处都会发生分解。以前尚不清楚动力学过程,如果正确实施,可能会导致固态满电池具有非常高的工作电压。
更新日期:2020-09-08
down
wechat
bug