当前位置: X-MOL 学术Quantum Inf. Process. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Quantum QR decomposition in the computational basis
Quantum Information Processing ( IF 2.2 ) Pub Date : 2020-07-29 , DOI: 10.1007/s11128-020-02777-4
Guangsheng Ma , Hongbo Li , Jiman Zhao

In this paper, we propose a quantum algorithm for approximating the QR decomposition of any \(N\times N\) matrix with a running time \(O(\frac{1}{\epsilon ^2}\)\(N^{2.5}\text {polylog}(N))\), where \(\epsilon \) is the desired precision. This quantum algorithm provides a polynomial speedup over the best classical algorithm, which has a running time \(O(N^3)\). Our quantum algorithm utilizes the quantum computation in the computational basis (QCCB) and a setting of updatable quantum memory. We further present a systematic approach to applying the QCCB to simulate any quantum algorithm. By this approach, the simulation time does not exceed \(O(N^2\text {polylog}(N))\) times the running time of the quantum algorithm originally designed with the amplitude encoding method, where N is the size of the problem.

中文翻译:

计算基础上的量子QR分解

在本文中,我们提出了一个量子算法用于近似任何的QR分解\(N \乘N \)矩阵与正在运行的时间\(O(\压裂{1} {\小量^ 2} \)\(N ^ {2.5} \ text {polylog}(N))\),其中\(\ epsilon \)是所需的精度。这种量子算法提供了优于最佳经典算法的多项式加速,后者的运行时间为\(O(N ^ 3)\)。我们的量子算法利用计算基础(QCCB)中的量子计算和可更新的量子内存设置。我们进一步提出了一种应用QCCB来模拟任何量子算法的系统方法。通过这种方法,模拟时间不超过\(O(N ^ 2 \ text {polylog}(N))\)乘以最初使用幅度编码方法设计的量子算法的运行时间的乘积,其中N是问题的大小。
更新日期:2020-07-29
down
wechat
bug