当前位置: X-MOL 学术J. Polym. Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Utilization of oleic acid in synthesis of epoxidized soybean oil based green polyurethane coating and its comparative study with petrochemical based polyurethane
Journal of Polymer Research ( IF 2.6 ) Pub Date : 2020-07-29 , DOI: 10.1007/s10965-020-02170-w
Pavan M. Paraskar , Mayur S. Prabhudesai , Priya S. Deshpande , Ravindra D. Kulkarni

Epoxidation of soybean oil (ESBO) was carried out using Amberlyst 15 catalyst followed by ring opening using bio-based oleic acid to yield polyester polyol (ESOAP). Polyurethane (PU) coating was prepared by utilizing synthesized polyester polyol with hexamethylene diisocyanate (HDI) in the presence of dipentene as a green solvent. To meet industrial standards, biobased polyurethane coatings (Bio-PU) must match the performance of petroleum based polyurethane (Petro-PU) and hence a comparative study is carried out between synthesized bio based polyurethane coating and a petroleum based polyurethane coating. The characterization techniques like Fourier-transform infrared spectroscopy (FT-IR) and Nuclear magnetic resonance (NMR) used for structural elucidation of epoxidized soybean oil and polyester polyol. The cured Bio-PU coating shows good optical and mechanical properties compared to Petro-PU coating. Differential scanning calorimetry (DSC) and Thermo gravimetric analysis (TGA) analysis were carried out to analyse the glass transition temperature (Tg) and thermal stability of the PU coatings. The Electrochemical impendence spectroscopy (EIS) study revealed that the Bio-PU coating exhibited high corrosion resistance (1.23 × 107) against Petro- PU coating. The bio-based content of synthesized polyurethane was calculated to 88.43%. The contribution of oleic acid grants a novel approach to this scheme along with making the end application of coatings more environment friendly.



中文翻译:

油酸在合成环氧化大豆油基绿色聚氨酯涂料中的利用及其与石化基聚氨酯的比较研究

使用Amberlyst 15催化剂对大豆油(ESBO)进行环氧化,然后使用生物基油酸进行开环反应,制得聚酯多元醇(ESOAP)。在二戊烯作为绿色溶剂的情况下,利用合成的聚酯多元醇与六亚甲基二异氰酸酯(HDI)来制备聚氨酯(PU)涂层。为了满足工业标准,生物基聚氨酯涂料(Bio-PU)必须与石油基聚氨酯(Petro-PU)的性能相匹配,因此在合成的生物基聚氨酯涂料和石油基聚氨酯涂料之间进行了对比研究。表征技术,例如傅立叶变换红外光谱(FT-IR)和核磁共振(NMR),用于阐明环氧化大豆油和聚酯多元醇的结构。与Petro-PU涂​​层相比,固化的Bio-PU涂​​层显示出良好的光学和机械性能。进行差示扫描量热法(DSC)和热重分析(TGA)分析以分析PU涂层的玻璃化转变温度(Tg)和热稳定性。电化学阻抗谱(EIS)研究表明,Bio-PU涂​​层表现出高耐腐蚀性(1.23×107)反对Petro-PU涂​​层。合成聚氨酯的生物基含量经计算为88.43%。油酸的贡献为该方案提供了一种新颖的方法,同时使涂料的最终应用更加环境友好。

更新日期:2020-07-29
down
wechat
bug