当前位置: X-MOL 学术J. Phys. Condens. Matter › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Towards Electrical-Current Control of Quantum States in Spin-Orbit-Coupled Matter
Journal of Physics: Condensed Matter ( IF 2.3 ) Pub Date : 2020-07-28 , DOI: 10.1088/1361-648x/ab9d47
Gang Cao

Novel materials, which often exhibit surprising or even revolutionary physical properties, are necessary for critical advances in technologies. Simultaneous control of structural and physical properties via a small electrical current is of great significance both fundamentally and technologically. Recent studies demonstrate that a combination of strong spin-orbit interactions and a distorted crystal structure in magnetic Mott insulators is sufficient to attain this long-desired goal. In this Topical Review, we highlight underlying properties of this class of materials and present two representative antiferromagnetic Mott insulators, namely, 4d-electron based Ca2RuO4 and 5d-electron based Sr2IrO4. In essence, a small, applied electrical current engages with the lattice, critically reducing structural distortions, which in turn readily suppresses the antiferromagnetic and insulating state and subsequently results in emergent new states. While details may vary in different materials, at the heart of these phenomena are current-reduced lattice distortions, which, via spin-orbit interactions, dictate physical properties. Electrical current, which joins magnetic field, electric field, pressure, light, etc. as a new external stimulus, provides a new, key dimension for materials research, and also pose a series of intriguing questions that may provide the impetus for advancing our understanding of spin-orbit-coupled matter. This Topical Review provides a brief introduction, a few hopefully informative examples and some general remarks. It is by no means an exhaustive report of the current state of studies on this topic.

中文翻译:

自旋轨道耦合物质中量子态的电流控制

新材料通常表现出令人惊讶甚至革命性的物理特性,对于技术的关键进步是必不可少的。通过小电流同时控制结构和物理特性在基础和技术上都具有重要意义。最近的研究表明,强自旋轨道相互作用和磁性莫特绝缘体中扭曲的晶体结构的组合足以实现这一长期期望的目标。在本专题评论中,我们重点介绍了此类材料的基本特性,并介绍了两种具有代表性的反铁磁莫特绝缘体,即基于 4d 电子的 Ca2RuO4 和基于 5d 电子的 Sr2IrO4。从本质上讲,一个小的外加电流与晶格接触,极大地减少了结构扭曲,这反过来很容易抑制反铁磁和绝缘状态,并随后导致出现新的状态。虽然不同材料的细节可能有所不同,但这些现象的核心是电流减少的晶格畸变,通过自旋轨道相互作用决定物理特性。电流联合磁场、电场、压力、光等作为新的外部刺激,为材料研究提供了一个新的、关键的维度,也提出了一系列有趣的问题,可能为推进我们的理解提供动力自旋轨道耦合物质。这篇专题评论提供了一个简短的介绍、一些希望提供信息的例子和一些一般性评论。它绝不是关于该主题研究现状的详尽报告。
更新日期:2020-07-28
down
wechat
bug