当前位置: X-MOL 学术bioRxiv. Biochem. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Hierarchical design of multi-scale protein complexes by combinatorial assembly of oligomeric helical bundle and repeat protein building blocks
bioRxiv - Biochemistry Pub Date : 2020-07-28 , DOI: 10.1101/2020.07.27.221333
Yang Hsia , Rubul Mout , William Sheffler , Natasha I. Edman , Ivan Vulovic , Young-Jun Park , Rachel L. Redler , Matthew J. Bick , Asim K. Bera , Alexis Courbet , Alex Kang , TJ Brunette , Una Nattermann , Evelyn Tsai , Ayesha Saleem , Cameron M. Chow , Damian Ekiert , Gira Bhabha , David Veesler , David Baker

A goal of de novo protein design is to develop a systematic and robust approach to generating complex nanomaterials from stable building blocks. Due to their structural regularity and simplicity, a wide range of monomeric repeat proteins and oligomeric helical bundle structures have been designed and characterized. Here we describe a stepwise hierarchical approach to building up multi-component symmetric protein assemblies using these structures. We first connect designed helical repeat proteins (DHRs) to designed helical bundle proteins (HBs) to generate a large library of heterodimeric and homooligomeric building blocks; the latter have cyclic symmetries ranging from C2 to C6. All of the building blocks have repeat proteins with accessible termini, which we take advantage of in a second round of architecture guided rigid helical fusion (WORMS) to generate larger symmetric assemblies including C3 and C5 cyclic and D2 dihedral rings, a tetrahedral cage, and a 120 subunit icosahedral cage. Characterization of the structures by small angle x-ray scattering, x-ray crystallography, and cryo-electron microscopy demonstrates that the hierarchical design approach can accurately and robustly generate a wide range of macromolecular assemblies; with a diameter of 43nm, the icosahedral nanocage is the largest structurally validated designed cage to date. The computational methods and building block sets described here provide a very general route to new de novo designed symmetric protein nanomaterials.

中文翻译:

通过寡聚螺旋束和重复蛋白构件的组合组装进行多尺度蛋白复合物的分层设计

从头设计蛋白质的目的是开发一种系统且可靠的方法,以从稳定的结构单元中生成复杂的纳米材料。由于它们的结构规则性和简单性,已经设计和表征了多种单体重复蛋白和寡聚螺旋束结构。在这里,我们描述了使用这些结构建立多组分对称蛋白装配体的逐步分层方法。我们首先将设计的螺旋重复蛋白(DHR)与设计的螺旋束蛋白(HBs)连接起来,以生成一个大型的异二聚体和同聚低聚构件库。后者具有从C2到C6的循环对称性。所有结构单元都具有重复蛋白,其末端具有可及性,我们在第二轮架构导向的刚性螺旋融合(WORMS)中利用了这一点,以生成更大的对称组件,包括C3和C5环状和D2二面体环,四面体笼和120个亚单位二十面体笼。通过小角度X射线散射,X射线晶体学和低温电子显微镜对结构进行表征,证明了分层设计方法可以准确而可靠地生成各种大分子组装体。二十面体纳米笼的直径为43nm,是迄今为止最大的结构验证设计笼。本文所述的计算方法和构件集为从头设计新的对称蛋白质纳米材料提供了一条非常通用的途径。一个四面体的笼子和一个120个亚单位的二十面体的笼子。通过小角度X射线散射,X射线晶体学和低温电子显微镜对结构进行表征,证明了分层设计方法可以准确而可靠地生成各种大分子组装体。二十面体纳米笼的直径为43nm,是迄今为止最大的结构验证设计笼。本文所述的计算方法和构件集为从头设计新的对称蛋白质纳米材料提供了一条非常通用的途径。一个四面体的笼子和一个120个亚单位的二十面体的笼子。通过小角度X射线散射,X射线晶体学和低温电子显微镜对结构进行表征,证明了分层设计方法可以准确而可靠地生成各种大分子组装体。二十面体纳米笼的直径为43nm,是迄今为止最大的结构验证设计笼。本文所述的计算方法和构件集为从头设计新的对称蛋白质纳米材料提供了一条非常通用的途径。二十面体纳米笼的直径为43nm,是迄今为止最大的经过结构验证的设计笼。本文所述的计算方法和构件集为从头设计新的对称蛋白质纳米材料提供了一条非常通用的途径。二十面体纳米笼的直径为43nm,是迄今为止最大的结构验证设计笼。本文所述的计算方法和构件集为从头设计新的对称蛋白质纳米材料提供了一条非常通用的途径。
更新日期:2020-07-28
down
wechat
bug