当前位置: X-MOL 学术J. Biomed. Mater. Res. Part A › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Experimental and theoretical investigations of the influences of one‐dimensional hydroxyapatite nanostructures on cytocompatibility
Journal of Biomedical Materials Research Part A ( IF 4.9 ) Pub Date : 2020-07-27 , DOI: 10.1002/jbm.a.37068
Yile Jia 1 , Lu Qin 1 , Yi Gong 2 , Rui Chen 3 , Yulu Yang 1 , Weihu Yang 1 , Kaiyong Cai 1
Affiliation  

Due to their simple crystal structures, one‐dimensional hydroxyapatite (HA) nanostructures are easily to be applied to understand the fundamental concepts about the influences of HA dimensionality on physical, chemical, and biological properties. So, in this work, three typical HA one‐dimensional nanostructures, HA nanotubes, HA nanowires, and HA nanospheres, were prepared, whose theoretical structures were built also. in vitro cytocompatibility test proved that, contrasting with TCPS, HA one‐dimensional nanostructures had certain degree of cytotoxicity because HA nanostructures increase the generation of intracellular reactive oxygen species (ROS) and intracellular calcium. Theoretical simulation indicated that HA nanosphere has higher intracellular ROS generation and lower ROS storage amount than HA nanowire and HA nanotube, which were the possible reasons for its stronger cytotoxicity. Among these typical one‐dimensional nanostructures, owing to higher drug storage amount and sustained delivery ability, HA nanotube was more potential application in orthopedics. The tubular structure of HA nanotubes could be used as reservoirs for small molecule drugs or growth factors. The cytocompatibility of HA nanostructures can be improved obviously when they were produced into two‐dimensional structures. The prepared multilayer structure can simulate lamellar structures of Harvard system and enhance the cytocompatibility of Ti substrate. Therefore, the method used in this work is a prospective method to improve the inherently bio‐inert of Ti when used in hard tissue repairing.

中文翻译:

一维羟基磷灰石纳米结构对细胞相容性影响的实验和理论研究

由于其简单的晶体结构,一维羟基磷灰石 (HA) 纳米结构很容易应用于理解 HA 维数对物理、化学和生物学特性影响的基本概念。因此,在这项工作中,制备了三种典型的HA一维纳米结构,HA纳米管、HA纳米线和HA纳米球,并建立了其理论结构。体外细胞相容性试验证明,与 TCPS 相比,HA 一维纳米结构具有一定的细胞毒性,因为 HA 纳米结构增加了细胞内活性氧(ROS)和细胞内钙的产生。理论模拟表明,HA纳米球比HA纳米线和HA纳米管具有更高的细胞内ROS产生和更低的ROS储存量,这是其较强的细胞毒性的可能原因。在这些典型的一维纳米结构中,由于具有更高的药物储存量和持续递送能力,HA纳米管在骨科领域的应用潜力更大。HA纳米管的管状结构可用作小分子药物或生长因子的储库。HA纳米结构制成二维结构后,其细胞相容性明显提高。制备的多层结构可以模拟哈佛体系的层状结构,增强Ti底物的细胞相容性。因此,这项工作中使用的方法是一种前瞻性的方法,可以提高钛在硬组织修复中的固有生物惰性。由于更高的药物储存量和持续输送能力,HA纳米管在骨科领域更具潜力。HA纳米管的管状结构可用作小分子药物或生长因子的储库。HA纳米结构制成二维结构后,其细胞相容性明显提高。制备的多层结构可以模拟哈佛体系的层状结构,增强Ti底物的细胞相容性。因此,这项工作中使用的方法是一种前瞻性的方法,可以提高钛在硬组织修复中的固有生物惰性。由于更高的药物储存量和持续输送能力,HA纳米管在骨科领域更具潜力。HA纳米管的管状结构可用作小分子药物或生长因子的储库。HA纳米结构制成二维结构后,其细胞相容性明显提高。制备的多层结构可以模拟哈佛体系的层状结构,增强Ti底物的细胞相容性。因此,这项工作中使用的方法是一种前瞻性的方法,可以提高钛在硬组织修复中的固有生物惰性。HA纳米管的管状结构可用作小分子药物或生长因子的储库。HA纳米结构制成二维结构后,其细胞相容性明显提高。制备的多层结构可以模拟哈佛体系的层状结构,增强Ti底物的细胞相容性。因此,这项工作中使用的方法是一种前瞻性的方法,可以提高钛在硬组织修复中的固有生物惰性。HA纳米管的管状结构可用作小分子药物或生长因子的储库。HA纳米结构制成二维结构后,其细胞相容性明显提高。制备的多层结构可以模拟哈佛体系的层状结构,增强Ti底物的细胞相容性。因此,这项工作中使用的方法是一种前瞻性的方法,可以提高钛在硬组织修复中的固有生物惰性。
更新日期:2020-07-27
down
wechat
bug