当前位置: X-MOL 学术Joule › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Present Efficiencies and Future Opportunities in Thermophotovoltaics
Joule ( IF 38.6 ) Pub Date : 2020-07-28 , DOI: 10.1016/j.joule.2020.06.021
Tobias Burger , Caroline Sempere , Bosun Roy-Layinde , Andrej Lenert

Despite the relevance of thermophotovoltaic (TPV) conversion to many emerging energy technologies, identifying which aspects of current TPV designs are favorable and where opportunities for improvement remain is challenging because of the experimental variability in TPV literature, including emitter and cell temperatures, cavity geometry, and system scale. This review examines several decades of experimental TPV literature and makes meaningful comparisons across TPV reports by comparing each energy-conversion step to its respective, experiment-specific thermodynamic limit. We find that peak reported efficiencies are nearing 50% of their thermodynamic limit. Emitter-cell pairs that best manage the broad spectrum of thermal radiation exhibit the best efficiencies. Large gains in peak efficiency are expected from further suppression of sub-bandgap radiative transfer, as well as improvements in carrier management that address bandgap underutilization and Ohmic losses. Furthermore, there is a noticeable practical gap between the leading material pairs and integrated devices, mainly due to a lack of scaled-up high-performance materials, which exposes surfaces to parasitic heat loss. Provided these challenges are overcome, TPVs may ultimately provide power on demand and near the point of use, enabling greater integration of intermittent renewables.



中文翻译:

光伏热发电的当前效率和未来机遇

尽管热电(TPV)转换与许多新兴能源技术相关,但由于TPV文献中的实验变异性(包括发射极和电池温度,腔体几何形状,和系统规模。这篇综述检查了几十年的TPV实验文献,并通过将每个能量转换步骤与其各自的特定于实验的热力学极限进行比较,对TPV报告进行了有意义的比较。我们发现报告的峰值效率接近其热力学极限的50%。最好地管理宽范围热辐射的发射器对具有最高的效率。可以进一步抑制亚带隙辐射转移,以及解决带隙利用不足和欧姆损耗的载波管理方面的改进,有望在峰值效率方面获得较大收益。此外,主要材料对和集成器件之间存在明显的实际差距,这主要是由于缺乏按比例放大的高性能材料,该材料使表面暴露于寄生热损失。如果克服了这些挑战,TPV最终可以按需并在使用点附近提供电力,从而实现间歇性可再生能源的更大整合。主要是由于缺乏按比例放大的高性能材料,该材料会使表面暴露于寄生热损失中。如果克服了这些挑战,TPV最终可以按需并在使用点附近提供电力,从而实现间歇性可再生能源的更大整合。主要是由于缺乏按比例放大的高性能材料,该材料会使表面暴露于寄生热损失。如果克服了这些挑战,TPV最终可以按需并在使用点附近提供电力,从而实现间歇性可再生能源的更大整合。

更新日期:2020-07-28
down
wechat
bug