当前位置: X-MOL 学术Chem. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Mechanochemical synthesis of glycine oligomers in a virtual rotational diamond anvil cell
Chemical Science ( IF 7.6 ) Pub Date : 2020-07-27 , DOI: 10.1039/d0sc00755b
Brad A Steele 1 , Nir Goldman 1 , I-Feng W Kuo 1 , Matthew P Kroonblawd 1
Affiliation  

Mechanochemistry of glycine under compression and shear at room temperature is predicted using quantum-based molecular dynamics (QMD) and a simulation design based on rotational diamond anvil cell (RDAC) experiments. Ensembles of high throughput semiempirical density functional tight binding (DFTB) simulations are used to identify chemical trends and bounds for glycine chemistry during rapid shear under compressive loads of up to 15.6 GPa. Significant chemistry is found to occur during compressive shear above 10 GPa. Recovered products consist of small molecules such as water, structural analogs to glycine, heterocyclic molecules, large oligomers, and polypeptides including the simplest polypeptide glycylglycine at up to 4% mass fraction. The population and size of oligomers generally increases with pressure. A number of oligomeric polypeptide precursors and intermediates are also identified that consist of two or three glycine monomers linked together through C–C, C–N, and/or C–O bridges. Even larger oligomers also form that contain peptide C–N bonds and exhibit branched structures. Many of the product molecules exhibit one or more chiral centers. Our simulations demonstrate that athermal mechanical compressive shearing of glycine is a plausible prebiotic route to forming polypeptides.

中文翻译:

虚拟旋转金刚石砧室中甘氨酸低聚物的机械化学合成

使用基于量子的分子动力学 (QMD) 和基于旋转金刚石砧室 (RDAC) 实验的模拟设计来预测室温下压缩和剪切下甘氨酸的机械化学。高通量半经验密度功能紧结合 (DFTB) 模拟组合用于识别在高达 15.6 GPa 的压缩载荷下快速剪切过程中甘氨酸化学的化学趋势和界限。发现在 10 GPa 以上的压缩剪切过程中会发生显着的化学反应。回收的产品由小分子(例如水)、甘氨酸结构类似物、杂环分子、大寡聚物和多肽(包括质量分数高达 4% 的最简单的多肽甘氨酰甘氨酸)组成。低聚物的数量和尺寸通常随着压力的增加而增加。还鉴定了许多寡聚多肽前体和中间体,它们由通过 C-C、C-N 和/或 C-O 桥连接在一起的两个或三个甘氨酸单体组成。甚至更大的寡聚物也会形成,其中含有肽 C-N 键并表现出支化结构。许多产物分子具有一个或多个手性中心。我们的模拟表明,甘氨酸的无热机械压缩剪切是形成多肽的合理的益生元途径。
更新日期:2020-08-05
down
wechat
bug