当前位置: X-MOL 学术J. Compos. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A multi-stage material model calibration procedure for enhancing numerical solution fidelity in the case of impact loading of composites
Journal of Composite Materials ( IF 2.3 ) Pub Date : 2020-07-26 , DOI: 10.1177/0021998320944992
Efthimios Giannaros 1 , Athanasios Kotzakolios 1 , George Sotiriadis 1 , Vassilis Kostopoulos 1
Affiliation  

The numerical prediction of impact-induced damage to composite materials and the subsequent residual strength under compression loading continue to be a challenging task. The current study proposes a calibration routine for optimizing the set of material model parameters prior to the virtual simulation of impact tests, which also simplifies the process of parameter determination. The calibration algorithm is based on the comparison of the numerical force-strain or force-displacement curves with the corresponding experimental ones to get the optimal input data, and it includes basic quasi-static material characterization tests. For the sake of simplicity, the calibration process was divided into two parts. The first part includes the in-plane loading tests (tension 0° & 90°, compression 0° & 90°, shear and open-hole tension) for calibration of orthotropic damage material model; whereas the second one consists of the mode I and mode II interlaminar fracture tests as well as the short beam shear test, and it mainly targets to the adjustment of cohesive model parameters. Given the optimal set of parameters of material models, low and high velocity impact simulations at the energy level of 30 J were carried-out to LS-DYNA software and compared with experiments. The percentage difference between numerical and experimental delamination area, after the calibration enablement, reduced from 77% and 60% to 10% and 25% for low- and high-velocity impact, respectively. Afterwards, the damaged specimens were experimentally and virtually tested to compression loading. In terms of maximum compressive load, the computational error is close to 1% for both impact conditions.

中文翻译:

在复合材料冲击载荷情况下提高数值解保真度的多阶段材料模型校准程序

对复合材料的冲击引起的损伤和随后的压缩载荷下的残余强度的数值预测仍然是一项具有挑战性的任务。目前的研究提出了一种校准程序,用于在冲击试验的虚拟模拟之前优化材料模型参数集,这也简化了参数确定的过程。校准算法基于将数值力-应变或力-位移曲线与相应的实验曲线进行比较以获得最佳输入数据,它包括基本的准静态材料表征测试。为简单起见,校准过程分为两部分。第一部分包括面内加载测试(拉伸 0° & 90°,压缩 0° & 90°,剪切和开孔张力)用于校准正交各向异性损伤材料模型;而第二个由模式I和模式II层间断裂试验以及短梁剪切试验组成,主要针对内聚模型参数的调整。给定材料模型的最佳参数集,在 LS-DYNA 软件中进行了 30 J 能量级的低速和高速冲击模拟,并与实验进行了比较。在启用校准后,数值和实验分层区域之间的百分比差异分别从低速和高速冲击的 77% 和 60% 减少到 10% 和 25%。之后,对损坏的样本进行了实验和虚拟压缩载荷测试。在最大压缩载荷方面,
更新日期:2020-07-26
down
wechat
bug