当前位置: X-MOL 学术Nat. Geosci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Materials and pathways of the organic carbon cycle through time
Nature Geoscience ( IF 15.7 ) Pub Date : 2020-07-27 , DOI: 10.1038/s41561-020-0563-8
Matthieu E. Galvez , Woodward W. Fischer , Samuel L. Jaccard , Timothy I. Eglinton

The cycle of organic carbon through the atmosphere, oceans, continents and mantle reservoirs is a hallmark of Earth. Over geological time, chemical exchanges between those reservoirs have produced a diversity of reduced carbon materials that differ in their molecular structures and reactivity. This reactive complexity challenges the canonical dichotomy between the surface and deep, short-term and long-term organic carbon cycle. Old and refractory carbon materials are not confined to the lithosphere but are ubiquitous in the surface environment, and the lithosphere hosts various forms of reduced carbon that can be very reactive. The biological and geological pathways that drive the organic carbon cycle have changed through time; from a synthesis of these changes, it emerges that although a biosphere is required to produce organic carbon, mortality is required to ensure its export to the lithosphere, and graphitization is essential for its long-term stabilization in the solid Earth. Among the by-products of the organic carbon cycle are the accumulation of a massive lithospheric reservoir of organic carbon, the accumulation of dioxygen in the atmosphere and the rise of a terrestrial biosphere. Besides driving surface weathering reactions, free dioxygen has allowed the evolution of new metabolic pathways to produce and respire organic carbon. From the evolution of photosynthesis until the expansion of biomineralization in the Phanerozoic, inorganic controls on the organic carbon cycle have diversified, tightening the connection between the biosphere and geosphere.



中文翻译:

有机碳的物质和途径随时间循环

通过大气层,海洋,大陆和地幔库的有机碳循环是地球的标志。在地质时期内,这些储层之间的化学交换产生了多种还原碳材料,这些材料的分子结构和反应性各不相同。这种反应性复杂性挑战了表面与深层,短期和长期有机碳循环之间的规范二分法。旧的和难熔的碳材料并不局限于岩石圈,而是在地表环境中无处不在,并且岩石圈含有各种形式的还原碳,它们可以具有很高的反应性。推动有机碳循环的生物学和地质途径已经随着时间而改变。这些变化的综合结果表明,尽管需要生物圈来生产有机碳,为了确保其出口到岩石圈,必须要有很高的死亡率,而石墨化对其在固体地球中的长期稳定至关重要。在有机碳循环的副产物中,有大量岩石圈有机碳储集层的积累,大气中双氧的积累和陆地生物圈的上升。除了驱动表面风化反应外,游离双氧还允许进化出新的代谢途径来产生和释放有机碳。从光合作用的发展到生代化中生物矿化的扩展,对有机碳循环的无机控制已经多样化,从而加强了生物圈与地球圈之间的联系。石墨化对其在固体地球中的长期稳定至关重要。在有机碳循环的副产物中,有大量岩石圈有机碳储集层的积累,大气中双氧的积累和陆地生物圈的上升。除了驱动表面风化反应外,游离双氧还允许进化出新的代谢途径来产生和释放有机碳。从光合作用的发展到生代化中生物矿化的扩展,对有机碳循环的无机控制已经多样化,从而加强了生物圈与地球圈之间的联系。石墨化对其在固体地球中的长期稳定至关重要。在有机碳循环的副产物中,有大量岩石圈有机碳储集层的积累,大气中双氧的积累和陆地生物圈的上升。除了驱动表面风化反应外,游离双氧还允许进化出新的代谢途径来产生和释放有机碳。从光合作用的发展到生代化中生物矿化的扩展,对有机碳循环的无机控制已经多样化,从而加强了生物圈与地球圈之间的联系。大气中双氧的积累和陆地生物圈的上升。除了驱动表面风化反应外,游离双氧还允许进化出新的代谢途径来产生和释放有机碳。从光合作用的发展到生代化中生物矿化的扩展,对有机碳循环的无机控制已经多样化,从而加强了生物圈与地球圈之间的联系。大气中双氧的积累和陆地生物圈的上升。除了驱动表面风化反应外,游离双氧还允许进化出新的代谢途径来产生和释放有机碳。从光合作用的发展到生代化中生物矿化的扩展,对有机碳循环的无机控制已经多样化,从而加强了生物圈与地球圈之间的联系。

更新日期:2020-07-27
down
wechat
bug