当前位置: X-MOL 学术ACS Energy Lett. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Progress in Perovskite Photocatalysis
ACS Energy Letters ( IF 19.3 ) Pub Date : 2020-07-27 , DOI: 10.1021/acsenergylett.0c01480
Kirk S. Schanze , Prashant V. Kamat , Piedong Yang , Juan Bisquert

Figure 1. Schematic illustration of interfacial electron and hole transfer processes in CsPbBr3 nanoplatelets. Reprinted from ref 7. Copyright 2019 American Chemical Society. Figure 2. Schematic showing photoassisted proton reduction with halide perovskite photocathodes. Reprinted from ref 18. Copyright 2019 American Chemical Society. Solar-Driven Metal Halide Perovskite Photocatalysis: Design, Stability, and Performance. Haowei Huang, Bapi Pradhan, Johan Hofkens, Maarten B. J. Roeffaers*, and Julian A. Steele* ACS Energy Letters, 2020, 5, 4, 1107–1123 (Review); DOI: 10.1021/acsenergylett.0c00058 Hybrid Organic–Inorganic Materials and Composites for Photoelectrochemical Water Splitting. Simrjit Singh, Hongjun Chen, Shamim Shahrokhi, Luyuan Paul Wang, Chun-Ho Lin, Long Hu, Xinwei Guan, Antonio Tricoli, Zhichuan J. Xu, and Tom Wu* ACS Energy Letters, 2020, 5, 5, 1487–1497 (Focus Review); DOI: 10.1021/acsenergylett.0c00327 Surface Modification for Improving the Photocatalytic Polymerization of 3,4-Ethylenedioxythiophene over Inorganic Lead Halide Perovskite Quantum Dots. Yue Li, Qinghai Shu, Qin Du, Yi Dai, Siwei Zhao, Jinxiang Zhang, Lijie Li, and Kun Chen* ACS Applied Materials & Interfaces, 2020, 12, 1, 451–460 (Research Article); DOI: 10.1021/acsami.9b14365 Unravelling the Photocatalytic Behavior of All-Inorganic Mixed Halide Perovskites: The Role of Surface Chemical States. Andrés F. Gualdrón-Reyes*, Jhonatan Rodrı́guez-Pereira, Eliseo Amado-González, Jorge Rueda-P, Rogelio Ospina, Sofia Masi, Seog Joon Yoon, Juan Tirado, Franklin Jaramillo, Said Agouram, Vicente Muñoz- Sanjosé, Sixto Giménez, and Iván Mora-Seró* ACS Applied Materials & Interfaces, 2020, 12, 1, 914–924 (Research Article); DOI: 10.1021/acsami.9b19374 Growing Poly(norepinephrine) Layer over Individual Nanoparticles to Boost Hybrid Perovskite Photocatalysts. Yidi Wang, Liangfeng Luo, Ziqi Wang, Benjamin Tawiah, Chang Liu, John H. Xin, Bin Fei*, and Wai-Yeung Wong* ACS Applied Materials & Interfaces, 2020, 12, 24, 27578–27586 (Applications of Polymer, Composite, and Coating Materials); DOI: 10.1021/acsami.0c06081 CsPbBr3/ZnS Core/Shell Type Nanocrystals for Enhancing Luminescence Lifetime and Water Stability. Vikash Kumar Ravi*, Sajid Saikia, Shivam Yadav, Vaibhav V. Nawale, and Angshuman Nag* ACS Energy Letters, 2020, 5, 6, 1794–1796 (Energy Express); DOI: 10.1021/acsenergylett.0c00858 Ultrafast Charge Separation in Two-Dimensional CsPbBr3 Perovskite Nanoplatelets. Qiuyang Li and Tianquan Lian* The Journal of Physical Chemistry Letters, 2019, 10, 3, 566–573 (Letter); DOI: 10.1021/acs.jpclett.8b03610 Perovskite Photocatalysis. Methyl Viologen Induces Unusually Long-Lived Charge Carrier Separation in CsPbBr3 Nanocrystals. Steven M. Kobosko, Jeffrey T. DuBose, and Prashant V. Kamat* ACS Energy Letters, 2020, 5, 1, 221–223 (Energy Express); DOI: 10.1021/acsenergylett.9b02573 Probing Perovskite Photocatalysis. Interfacial Electron Transfer between CsPbBr3 and Ferrocene Redox Couple. Jeffrey T. DuBose and Prashant V. Kamat* The Journal of Physical Chemistry Letters, 2019, 10, 20, 6074–6080 (Letter); DOI: 10.1021/acs.jpclett.9b02294 In Situ Construction of a Cs2SnI6 Perovskite Nanocrystal/SnS2 Nanosheet Heterojunction with Boosted Interfacial Charge Transfer. Xu-Dong Wang, Yu-Hua Huang, Jin-Feng Liao, Yong Jiang, Lei Zhou, Xiao-Yan Zhang, Hong-Yan Chen, and Dai-Bin Kuang* Journal of the American Chemical Society, 2019, 141, 34, 13434–13441 (Article); DOI: 10.1021/jacs.9b04482 Photocatalytic Polymerization of 3,4-Ethylenedioxythiophene over Cesium Lead Iodide Perovskite Quantum Dots. Kun Chen, Xiaohui Deng, Georgios Dodekatos, and Harun Tüysüz* Journal of the American Chemical Society, 2017, 139, 35, 12267–12273 (Article) ACS Author Choice; DOI: 10.1021/jacs.7b06413 C(sp3)–H Bond Activation by Perovskite Solar Photocatalyst Cell. Haowei Huang, Haifeng Yuan, Jiwu Zhao, Guillermo Solı́s-Fernández, Chen Zhou, Jin Won Seo, Jelle Hendrix, Elke Debroye, Julian A. Steele, Johan Hofkens, Jinlin Long*, and Maarten B. J. Roeffaers* ACS Energy Letters, 2019, 4, 1, 203–208 (Letter) DOI: 10.1021/acsenergylett.8b01698 Lead-Halide Perovskites for Photocatalytic α-Alkylation of Aldehydes. Xiaolin Zhu, Yixiong Lin, Yue Sun, Matthew C. Beard, and Yong Yan* Journal of the American Chemical Society, 2019, 141, 2, 733–738 (Communication); DOI: 10.1021/jacs.8b08720 Efficient and Selective Photocatalytic Oxidation of Benzylic Alcohols with Hybrid Organic–Inorganic Perovskite Materials. Haowei Huang, Haifeng Yuan*, Kris P. F. Janssen, Guillermo Solı́s-Fernández, Ying Wang, Collin Y. X. Tan, Dries Jonckheere, Elke Debroye, Jinlin Long, Jelle Hendrix, Johan Hofkens*, Julian A. Steele, and Maarten B. J. Roeffaers* ACS Energy Letters, 2018, 3, 4, 755–759 (Letter); DOI: 10.1021/acsenergylett.8b00131 Photocatalytic and Photoelectrochemical Degradation of Organic Compounds with All-Inorganic Metal Halide Perovskite Quantum Dots. Drialys Cardenas-Morcoso, Andrés F. Gualdrón-Reyes, Ana Beatriz Ferreira Vitoreti, Miguel Garclı́a- Tecedor, Seog Joon Yoon, Mauricio Solis de la Fuente, Iván Mora-Seró*, and Sixto Gimenez* The Journal of Physical Chemistry Letters, 2019, 10, 3, 630–636 (Letter); DOI: 10.1021/acs.jpclett.8b03849 Dynamic Interaction between Methylammonium Lead Iodide and TiO2 Nanocrystals Leads to Enhanced Photocatalytic H2 Evolution from HI Splitting. Xiaomei Wang, Hong Wang, Hefeng Zhang, Wei Yu, Xiuli Wang, Yue Zhao, Xu Zong*, and Can Li* ACS Energy Letters, 2018, 3, 5, 1159–1164 (Letter); DOI: 10.1021/acsenergylett.8b00488 Promoting Photocatalytic H2 Evolution on Organic–Inorganic Hybrid Perovskite Nanocrystals by Simultaneous Dual-Charge Transportation Modulation. Hong Wang, Xiaomei Wang, Ruotian Chen, Hefeng Zhang, Xiuli Wang, Junhui Wang, Jing Zhang, Linchao Mu, Kaifeng Wu, Fengtao Fan, Xu Zong*, and Can Li* ACS Energy Letters, 2019, 4, 1, 40–47 (Letter); DOI: 10.1021/acsenergylett.8b01830 Acid-Compatible Halide Perovskite Photocathodes Utilizing Atomic Layer Deposited TiO2 for Solar-Driven Hydrogen Evolution. In Soo Kim, Michael J. Pellin, and Alex B. F. Martinson* ACS Energy Letters, 2019, 4, 1, 293–298 (Letter); DOI: 10.1021/acsenergylett.8b01661 Integration of a Hydrogenase in a Lead Halide Perovskite Photoelectrode for Tandem Solar Water Splitting. Esther Edwardes Moore, Virgil Andrei, Sónia Zacarias, Inês A. C. Pereira, and Erwin Reisner* ACS Energy Letters, 2020, 5, 1, 232−237 (Letter); DOI: 10.1021/acsenergylett.9b02437 A CsPbBr3 Perovskite Quantum Dot/Graphene Oxide Composite for Photocatalytic CO2 Reduction. Yang-Fan Xu, Mu-Zi Yang, Bai-Xue Chen, Xu-Dong Wang, Hong-Yan Chen, Dai-Bin Kuang*, and Cheng-Yong Su Journal of the American Chemical Society, 2017, 139, 16, 5660–5663 (Communication); DOI: 10.1021/jacs.7b00489 CsPbBr3 Perovskite Nanocrystal Grown on MXene Nanosheets for Enhanced Photoelectric Detection and Photocatalytic CO2 Reduction. Aizhao Pan*, Xiaoqin Ma, Shengying Huang, Youshen Wu, Mengjun Jia, Yeming Shi, Ya Liu, Peihua Wangyang, Ling He*, and Yi Liu* The Journal of Physical Chemistry Letters, 2019, 10, 21, 6590–6597 (Letter); DOI: 10.1021/acs.jpclett.9b02605 Core@Shell CsPbBr3@Zeolitic Imidazolate Framework Nanocomposite for Efficient Photocatalytic CO2 Reduction Zi-Cheng Kong, Jin-Feng Liao, Yu-Jie Dong, Yang-Fan Xu, Hong-Yan Chen*, Dai-Bin Kuang, and Cheng-Yong Su ACS Energy Letters, 2018, 3, 11, 2656–2662 (Letter); DOI: 10.1021/acsenergylett.8b01658 Mechanism of Photocatalytic CO2 Reduction by Bismuth-Based Perovskite Nanocrystals at the Gas–Solid Interface. Sumit S. Bhosale, Aparna K. Kharade, Efat Jokar, Amir Fathi, Sue-min Chang, and Eric Wei-Guang Diau* Journal of the American Chemical Society, 2019, 141, 51, 20434–20442 (Article); DOI: 10.1021/jacs.9b11089 Doping Iron in CsPbBr3 Perovskite Nanocrystals for Efficient and Product Selective CO2 Reduction Sanjib Shyamal, Sumit Kumar Dutta, and Narayan Pradhan* The Journal of Physical Chemistry Letters, 2019, 10, 24, 7965–7969 (Letter); DOI: 10.1021/acs.jpclett.9b03176 Compositionally Screened Eutectic Catalytic Coatings on Halide Perovskite Photocathodes for Photoassisted Selective CO2 Reduction. Jie Chen, Jun Yin, Xiaopeng Zheng, Hassan Ait Ahsaine, Yang Zhou, Chunwei Dong, Omar F. Mohammed, Kazuhiro Takanabe, and Osman M. Bakr* ACS Energy Letters, 2019, 4, 6, 1279–1286 (Letter); DOI: 10.1021/acsenergylett.9b00751 Facets and Defects in Perovskite Nanocrystals for Photocatalytic CO2 Reduction. Sanjib Shyamal, Sumit Kumar Dutta, Tisita Das, Suvodeep Sen, Sudip Chakraborty*, and Narayan Pradhan* The Journal of Physical Chemistry Letters, 2020, 11, 9, 3608–3614 (Letter); DOI: 10.1021/acs.jpclett.0c01088 All-Inorganic CsPbBr3 Nanocrystals: Gram-Scale Mechanochemical Synthesis and Selective Photocatalytic CO2 Reduction to Methane. Santosh Kumar, Miriam Regue, Mark A. Isaacs, Emma Freeman, and Salvador Eslava* ACS Applied Energy Materials, 2020, 3, 5, 4509–4522 (Article); DOI: 10.1021/acsaem.0c00195 Views expressed in this Energy Focus are those of the authors and not necessarily the views of the ACS. The authors declare no competing financial interest. The authors declare no competing financial interest. This article is cited by 2 publications. Figure 1. Schematic illustration of interfacial electron and hole transfer processes in CsPbBr3 nanoplatelets. Reprinted from ref 7. Copyright 2019 American Chemical Society. Figure 2. Schematic showing photoassisted proton reduction with halide perovskite photocathodes. Reprinted from ref 18. Copyright 2019 American Chemical Society.
更新日期:2020-07-27
down
wechat
bug