当前位置: X-MOL 学术Theor. Ecol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Local control of resource allocation is sufficient to model optimal dynamics in syntrophic systems
Theoretical Ecology ( IF 1.2 ) Pub Date : 2020-07-27 , DOI: 10.1007/s12080-020-00464-9
Glenn Ledder , Sabrina E. Russo , Erik B. Muller , Angela Peace , Roger M. Nisbet

Syntrophic systems are common in nature and include forms of obligate mutualisms in which each participating organism or component of an organism obtains from the other an essential nutrient or metabolic product that it cannot provide for itself. Models of how these complementary resources are allocated between partners often assume optimal behavior, but whether mechanisms enabling global control exist in syntrophic systems, and what form they might take, is unknown. Recognizing that growth of plant organs that supply complementary resources, like roots and shoots, can occur autonomously, we present a theory of plant growth in which root-shoot allocation is determined by purely local rules. Each organ uses as much as it can of its locally produced or acquired resource (inorganic nitrogen or photosynthate) and shares only the surplus. Subject to stoichiometric conditions that likely hold for most plants, purely local rules produce the same optimal allocation as would global control across a wide range of environmental scenarios, with sharing the surplus being the specific mechanism stabilizing syntrophic dynamics. Our local control model contributes a novel approach to plant growth modeling because it assumes a simple mechanism of root:shoot allocation that can be considered a higher-level physiological rule, from which the optimal growth outcome emerges from the system’s dynamics, rather than being built into the model. Moreover, our model is general, in that the mechanism of sharing the surplus can readily be adapted to many obligate syntrophic relationships.



中文翻译:

资源分配的本地控制足以在同步系统中建模最佳动态

共营养系统在自然界中很常见,包括专心共生的形式,在这种形式中,每个参与的生物或生物的组成部分都从对方那里获得了它自身无法提供的必需营养或代谢产物。如何在伙伴之间分配这些互补资源的模型通常采用最佳行为,但是在共营养体系中是否存在实现全局控制的机制,以及它们采取的形式,尚不清楚。认识到提供诸如根和芽之类的补充资源的植物器官的生长可以自动发生,我们提出了一种植物生长的理论,其中根冠分配完全由局部规则决定。每个器官会尽其所能使用其本地生产或获取的资源(无机氮或光合作用),并且仅分享剩余的资源。受大多数植物可能适用的化学计量条件的影响,纯粹的局部规则会产生与全局控制相同的最佳分配,在广泛的环境场景中均会如此,而剩余部分则是稳定营养动力学的特定机制。我们的局部控制模型为植物生长建模提供了一种新颖的方法,因为它假设了一个简单的root:shoot分配机制,可以将其视为更高级别的生理规则,从中可以从系统动力学中获得最佳的生长结果,而不是通过构建进入模型。而且,我们的模型是通用的,因为分享剩余的机制可以很容易地适应许多专性的养分关系。纯粹的本地规则会产生与全局控制相同的最佳分配,在广泛的环境场景中,共享剩余部分是稳定合成菌动态的特定机制。我们的局部控制模型为植物生长建模提供了一种新颖的方法,因为它假设了一个简单的root:shoot分配机制,可以将其视为更高级别的生理规则,从中可以从系统动力学中获得最佳的生长结果,而不是通过构建进入模型。而且,我们的模型是通用的,因为分享剩余的机制可以很容易地适应许多专性的养分关系。纯粹的本地规则会产生与全局控制相同的最佳分配,在广泛的环境场景中,共享剩余部分是稳定合成菌动态的特定机制。我们的局部控制模型为植物生长建模提供了一种新颖的方法,因为它假设了一个简单的root:shoot分配机制,可以将其视为更高级别的生理规则,从中可以从系统动力学中获得最佳的生长结果,而不是通过构建进入模型。而且,我们的模型是通用的,因为分享剩余的机制可以很容易地适应许多专性的养分关系。我们的局部控制模型为植物生长建模提供了一种新颖的方法,因为它假设了一个简单的root:shoot分配机制,可以将其视为更高级别的生理规则,从中可以从系统动力学中获得最佳的生长结果,而不是通过构建进入模型。而且,我们的模型是通用的,因为分享剩余的机制可以很容易地适应许多专性的养分关系。我们的局部控制模型为植物生长建模提供了一种新颖的方法,因为它假设了一个简单的root:shoot分配机制,可以将其视为更高级别的生理规则,从中可以从系统动力学中获得最佳的生长结果,而不是通过构建进入模型。而且,我们的模型是通用的,因为分享剩余的机制可以很容易地适应许多专性的养分关系。

更新日期:2020-07-27
down
wechat
bug