当前位置: X-MOL 学术Eng. Comput. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Bi-directional thermal buckling and resonance frequency characteristics of a GNP-reinforced composite nanostructure
Engineering with Computers Pub Date : 2020-07-27 , DOI: 10.1007/s00366-020-01110-y
Jing Li , Fei Tang , Mostafa Habibi

In this article, thermal buckling and resonance frequency of a composite cylindrical nanoshell reinforced with graphene nanoplatelets (GNP) under bi-directional thermal loading are presented. The temperature-dependent material properties of piece-wise GNP-reinforced composites (GNPRC) are assumed to be graded in the thickness direction of a cylindrical nanoshell. Also, Halphin-Tsai nanomechanical model is used to surmise the effective material properties of each layer. The size-dependent GNPRC nanoshell is analyzed using modified couple stress parameter (FMCS). For the first time, in the presented study show that bi-directional thermal buckling occurs if the percent of relative frequency change tends to 30%. The novelty of the current study is in considering the effects of bi-directional thermal loading in addition of FMCS on relative frequency, resonance frequencies, thermal buckling, and dynamic deflection of the GNPRC nanoshell. The governing equations and boundary conditions are developed using Hamilton’s principle and solved with the aid of analytical method. The results show that, various bi-directionasl thermal loading and other geometrical and mechanical properties have important role on resonance frequency, relative frequency change, thermal buckling, and dynamic deflection of the GNPRC cylindrical nanoshell. The results of the current study are useful suggestions for design of materials science, micro-mechanical and nano-mechanical systems such as microactuators and microsensors.

中文翻译:

GNP增强复合纳米结构的双向热屈曲和共振频率特性

在本文中,介绍了在双向热载荷下用石墨烯纳米片 (GNP) 增强的复合圆柱形纳米壳的热屈曲和共振频率。假定分段 GNP 增强复合材料 (GNPRC) 的温度相关材料特性在圆柱形纳米壳的厚度方向上分级。此外,Halphin-Tsai 纳米力学模型用于推测每一层的有效材料特性。使用修正的偶应力参数 (FMCS) 分析与尺寸相关的 GNPRC 纳米壳。在本研究中首次表明,如果相对频率变化的百分比趋于 30%,则会发生双向热屈曲。当前研究的新颖之处在于考虑了双向热载荷以及 FMCS 对相对频率的影响,GNPRC 纳米壳的共振频率、热屈曲和动态偏转。控制方程和边界条件是使用哈密顿原理开发的,并借助解析方法求解。结果表明,各种双向热载荷和其他几何和机械特性对 GNPRC 圆柱纳米壳的共振频率、相对频率变化、热屈曲和动态挠曲具有重要作用。目前的研究结果为材料科学、微机械和纳米机械系统(如微致动器和微传感器)的设计提供了有用的建议。控制方程和边界条件是使用哈密顿原理开发的,并借助解析方法求解。结果表明,各种双向热载荷和其他几何和机械特性对 GNPRC 圆柱纳米壳的共振频率、相对频率变化、热屈曲和动态挠曲具有重要作用。目前的研究结果为材料科学、微机械和纳米机械系统(如微致动器和微传感器)的设计提供了有用的建议。控制方程和边界条件是使用哈密顿原理开发的,并借助解析方法求解。结果表明,各种双向热载荷和其他几何和机械特性对 GNPRC 圆柱纳米壳的共振频率、相对频率变化、热屈曲和动态挠曲具有重要作用。目前的研究结果为材料科学、微机械和纳米机械系统(如微致动器和微传感器)的设计提供了有用的建议。
更新日期:2020-07-27
down
wechat
bug