当前位置: X-MOL 学术Addit. Manuf. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Selective coaxial ink 3D printing for single-pass fabrication of smart elastomeric foam with embedded stretchable sensor
Additive Manufacturing ( IF 11.0 ) Pub Date : 2020-07-26 , DOI: 10.1016/j.addma.2020.101487
Jiawen Xu , Xinghao Zhang , Yu Liu , Yang Zhang , Heng-Yong Nie , Gaoyang Zhang , Weilian Gao

Cellular materials are playing a critical role in a vast number of smart applications. Latest advances in additive manufacturing have catalyzed the structural metaproperties of the cellular materials. However, a major challenge remains for straightforward and rapid fabrication of smart cellular foams with embedded sensors while minimizing negative impacts on their mechanical performances. In this work, a selective coaxial ink 3D printing method is disclosed for manufacturing a smart elastomer cellular foam at a single pass, with its capability of precisely assigning a core–shell fiber segment as a strain sensor inside the cellular structure. Mechanical test results on these core–shell fiber segments point out that higher sensitivity can be obtained upon tension rather than compression. Therefore, in consideration of the effects of cellular structure i.e. face centered tetragonal (FCT) and simple cubic (SC), it is revealed that the FCT structure outperforms with a much higher strain sensitivity. By assigning different number of cellular layers and tuning the line spacing inside the cellular structure, the mechanical effects with embedding the sensor in the smart foam are assessed and increasing the line spacing might increase the sensitivity but will degrade the repeatability. In final, the stretching performance of the smart foam is studied, and its application is demonstrated.



中文翻译:

选择性同轴墨水3D打印,用于单通道制造带有嵌入式可拉伸传感器的智能弹性泡沫

蜂窝材料在众多智能应用中起着至关重要的作用。增材制造的最新进展催化了细胞材料的结构亚特性。然而,如何直接,快速地制造具有嵌入式传感器的智能多孔泡沫,同时最大程度地降低对其机械性能的负面影响仍然是一个重大挑战。在这项工作中,公开了一种选择性同轴油墨3D打印方法,用于一次制造智能弹性体多孔泡沫塑料,它能够精确地将核-壳纤维段分配为多孔结构内部的应变传感器。在这些核-壳纤维段上的机械测试结果表明,通过拉伸而不是压缩可以获得更高的灵敏度。因此,考虑到细胞结构,即面心四边形(FCT)和简单立方(SC)的影响,揭示了FCT结构的性能要好得多,应变敏感性更高。通过分配不同数量的多孔层并调整多孔结构内部的线间距,可以评估将传感器嵌入智能泡沫中的机械效果,增大线间距可能会提高灵敏度,但会降低可重复性。最后,研究了智能泡沫的拉伸性能,并演示了其应用。评估将传感器嵌入智能泡沫中的机械效果,增加行距可能会提高灵敏度,但会降低可重复性。最后,研究了智能泡沫的拉伸性能,并演示了其应用。评估将传感器嵌入智能泡沫中的机械效果,增加行距可能会提高灵敏度,但会降低可重复性。最后,研究了智能泡沫的拉伸性能,并演示了其应用。

更新日期:2020-07-26
down
wechat
bug