当前位置: X-MOL 学术Nano › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Ultrathin Silicon Nanowires Produced by a Bi-Metal-Assisted Chemical Etching Method for Highly Stable Lithium-Ion Battery Anodes
Nano ( IF 1.0 ) Pub Date : 2020-06-17 , DOI: 10.1142/s1793292020500769
Fang Sun 1 , Zhiyuan Tan 2 , Zhengguang Hu 3 , Jun Chen 1 , Jie Luo 1 , Xiaoling Wu 1 , Guoan Cheng 1 , Ruiting Zheng 1
Affiliation  

Silicon is widely studied as a high-capacity lithium-ion battery anode. However, the pulverization of silicon caused by a large volume expansion during lithiation impedes it from being used as a next generation anode for lithium-ion batteries. To overcome this drawback, we synthesized ultrathin silicon nanowires. These nanowires are 1D silicon nanostructures fabricated by a new bi-metal-assisted chemical etching process. We compared the lithium-ion battery properties of silicon nanowires with different average diameters of 100[Formula: see text]nm, 30[Formula: see text]nm and 10[Formula: see text]nm and found that the 30[Formula: see text]nm ultrathin silicon nanowire anode has the most stable properties for use in lithium-ion batteries. The above anode demonstrates a discharge capacity of 1066.0[Formula: see text]mAh/g at a current density of 300[Formula: see text]mA/g when based on the mass of active materials; furthermore, the ultrathin silicon nanowire with average diameter of 30[Formula: see text]nm anode retains 87.5% of its capacity after the 50th cycle, which is the best among the three silicon nanowire anodes. The 30[Formula: see text]nm ultrathin silicon nanowire anode has a more proper average diameter and more efficient content of SiOx. The above prevents the 30[Formula: see text]nm ultrathin silicon nanowires from pulverization and broken during cycling, and helps the 30[Formula: see text]nm ultrathin silicon nanowires anode to have a stable SEI layer, which contributes to its high stability.

中文翻译:

用于高稳定性锂离子电池负极的双金属辅助化学蚀刻法制备的超薄硅纳米线

硅作为高容量锂离子电池负极被广泛研究。然而,锂化过程中由于体积膨胀引起的硅粉化,阻碍了其用作下一代锂离子电池的负极。为了克服这个缺点,我们合成了超薄硅纳米线。这些纳米线是通过新的双金属辅助化学蚀刻工艺制造的一维硅纳米结构。我们比较了100[公式:见文]nm、30[公式:见文]nm和10[公式:见文]nm不同平均直径的硅纳米线的锂离子电池性能,发现30[公式:见文]nm见正文]nm 超薄硅纳米线阳极具有最稳定的性能,用于锂离子电池。上述阳极表现出1066.0的放电容量[公式:见正文]mAh/g,电流密度为300[公式:见正文]mA/g,基于活性物质的质量;此外,平均直径为30[公式:见正文]nm的超薄硅纳米线阳极在第50次循环后仍保持87.5%的容量,是三种硅纳米线阳极中最好的。30[公式:见正文]nm超薄硅纳米线阳极具有更合适的平均直径和更有效的SiO含量X. 以上防止了30[公式:见正文]nm超薄硅纳米线在循环过程中的粉化和断裂,并有助于30[公式:见正文]nm超薄硅纳米线阳极具有稳定的SEI层,有助于其高稳定性.
更新日期:2020-06-17
down
wechat
bug