当前位置: X-MOL 学术Int. J. Struct. Stab. Dyn. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Semi-Rigid Connection in Timber Structure: Stiffness Reduction and Instability Interaction
International Journal of Structural Stability and Dynamics ( IF 3.0 ) Pub Date : 2020-06-08 , DOI: 10.1142/s0219455420500728
A. Manuello 1
Affiliation  

Latticed shells and domes usually consist of hundreds, sometimes thousands, beam elements connected by rigid or semi-rigid joints. These connecting elements result, generally, very sophisticated, made with different materials and constituted by disparate connection systems. Recently, the stiffness connections were studied, numerically and experimentally, as one of the most important factors influencing significantly the structural response of space structures and domes. Very often, in the design process, the joints are assumed to be hinged or clamped. This assumption may result significantly far from the actual condition of in-service structure and components, leading to not understanding or not being able to prevent sudden catastrophic collapses (buckling, snap-through). Thus, the inclusion of joint stiffness reduction in the numerical model is necessary, more and more also due to the types of external loads, such as overloads that occur during the life of the structure or, especially, seismic solicitations. In this paper, the stability of an existent timber dome has been studied increasing the yieldingness of the connecting nodes according to an original approach. In addition, sensitivity of this kind of structure to the amplitude and the geometrical imperfections shape have been also considered. Numerical analyses have been conducted with local displacement controls, to take into account the geometric nonlinearity effects. Results evidenced that the dome is affected by instability interaction for particular slenderness and stiffness reduction of the connections.

中文翻译:

木结构中的半刚性连接:刚度降低和不稳定性相互作用

格子壳和圆顶通常由数百甚至数千个通过刚性或半刚性接头连接的梁单元组成。这些连接元件通常非常复杂,由不同的材料制成并由不同的连接系统构成。最近,刚度连接被研究,数值和实验,作为显着影响空间结构和圆顶结构响应的最重要因素之一。很多时候,在设计过程中,关节被假定为铰接或夹紧。这种假设可能会导致与在役结构和部件的实际状况相去甚远,导致不了解或无法防止突然的灾难性倒塌(屈曲、弹穿)。因此,在数值模型中包含节点刚度降低是必要的,这也越来越多地归因于外部载荷的类型,例如在结构寿命期间发生的过载,特别是地震请求。在本文中,研究了现有木穹顶的稳定性,根据原始方法增加了连接节点的屈服度。此外,还考虑了这种结构对振幅和几何缺陷形状的敏感性。数值分析采用局部位移控制进行,以考虑几何非线性效应。结果表明,圆顶受不稳定性相互作用的影响,特别是连接的细长和刚度降低。越来越多的原因还在于外部载荷的类型,例如在结构使用寿命期间发生的过载,尤其是地震请求。在本文中,研究了现有木穹顶的稳定性,根据原始方法增加了连接节点的屈服度。此外,还考虑了这种结构对振幅和几何缺陷形状的敏感性。数值分析采用局部位移控制进行,以考虑几何非线性效应。结果表明,圆顶受不稳定性相互作用的影响,特别是连接的细长和刚度降低。越来越多的原因还在于外部载荷的类型,例如在结构使用寿命期间发生的过载,尤其是地震请求。在本文中,研究了现有木穹顶的稳定性,根据原始方法增加了连接节点的屈服度。此外,还考虑了这种结构对振幅和几何缺陷形状的敏感性。数值分析采用局部位移控制进行,以考虑几何非线性效应。结果表明,圆顶受不稳定性相互作用的影响,特别是连接的细长和刚度降低。已经研究了现有木材圆顶的稳定性,根据原始方法增加了连接节点的屈服度。此外,还考虑了这种结构对振幅和几何缺陷形状的敏感性。数值分析采用局部位移控制进行,以考虑几何非线性效应。结果表明,圆顶受不稳定性相互作用的影响,特别是连接的细长和刚度降低。已经研究了现有木材圆顶的稳定性,根据原始方法增加了连接节点的屈服度。此外,还考虑了这种结构对振幅和几何缺陷形状的敏感性。数值分析采用局部位移控制进行,以考虑几何非线性效应。结果表明,圆顶受不稳定性相互作用的影响,特别是连接的细长和刚度降低。数值分析采用局部位移控制进行,以考虑几何非线性效应。结果表明,圆顶受不稳定性相互作用的影响,特别是连接的细长和刚度降低。数值分析采用局部位移控制进行,以考虑几何非线性效应。结果表明,圆顶受不稳定性相互作用的影响,特别是连接的细长和刚度降低。
更新日期:2020-06-08
down
wechat
bug