当前位置: X-MOL 学术J. Vib. Control › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A real-time co-simulation solution for train–track–bridge interaction
Journal of Vibration and Control ( IF 2.8 ) Pub Date : 2020-07-24 , DOI: 10.1177/1077546320946631
Wei Gong 1 , Zhihui Zhu 1, 2, 3 , Kun Wang 1, 3 , Weichao Yang 1 , Yu Bai 4 , Juanjuan Ren 5
Affiliation  

This study develops a real-time co-simulation solution that combines ANSYS and MATLAB for investigating of the train–track–bridge dynamic interactions, with the aim of providing an effective and robust method for analyzing and assessing the dynamic responses of running train and bridge, considering their complex nonlinear behaviors under extreme excitations such as earthquake and strong wind. The train–track–bridge coupled system consists of the train subsystem, the track subsystem, and the bridge subsystem. With the adoption of a previously developed efficient multi-time-step method, the train subsystem and the track subsystem are analyzed in MATLAB with a small time-step, whereas the bridge subsystem is analyzed in ANSYS using a large time-step. At each large time-step, the train–track subsystem in MATLAB and the bridge subsystem in ANSYS are coupled by communication of the track reaction forces calculated in MATLAB and the dynamic responses at the track–bridge connecting points calculated in ANSYS. The co-simulation procedure is validated through a comparison of the numerical results from computer coding developed by the authors and the measurement data of a cable-stayed bridge. To demonstrate the effectiveness and robustness of the proposed solution, the responses of a train passing through a cable-stayed bridge under earthquake excitation are analyzed, with consideration of the geometrical nonlinearity of the bridge, using the co-simulation solution.



中文翻译:

列车-轨道-桥梁相互作用的实时协同仿真解决方案

这项研究开发了一种实时协同仿真解决方案,该解决方案结合了ANSYS和MATLAB来研究火车-轨道-桥梁的动力相互作用,目的是提供一种有效而强大的方法来分析和评估运行中的火车和桥梁的动力响应。 ,考虑到它们在地震和强风等极端激励下的复杂非线性行为。列车-轨道-桥梁耦合系统由列车子系统,轨道子系统和桥梁子系统组成。通过采用以前开发的高效的多时间步长方法,可以在MATLAB中以较小的时间步长来分析火车子系统和轨道子系统,而在ANSYS中以较大的时间步长来分析桥梁子系统。在每个重要的步骤 通过在MATLAB中计算的轨道反作用力和在ANSYS中计算的轨道-桥梁连接点的动态响应的通信,将MATLAB中的火车-轨道子系统和ANSYS中的桥梁子系统耦合在一起。通过将作者开发的计算机编码的数值结果与斜拉桥的测量数据进行比较,可以验证协同仿真过程。为了证明所提出的解决方案的有效性和鲁棒性,使用共同仿真解决方案,在考虑桥梁几何非线性的情况下,分析了地震作用下通过斜拉桥的列车的响应。通过将作者开发的计算机编码的数值结果与斜拉桥的测量数据进行比较,可以验证协同仿真过程。为了证明所提出的解决方案的有效性和鲁棒性,使用共同仿真解决方案,在考虑桥梁几何非线性的情况下,分析了地震作用下通过斜拉桥的列车的响应。通过将作者开发的计算机编码的数值结果与斜拉桥的测量数据进行比较,可以验证协同仿真过程。为了证明所提出的解决方案的有效性和鲁棒性,使用共同仿真解决方案,在考虑桥梁几何非线性的情况下,分析了地震作用下通过斜拉桥的列车的响应。

更新日期:2020-07-24
down
wechat
bug