当前位置: X-MOL 学术Philos. Mag. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Structure stability, mechanical properties and thermal conductivity of the new hexagonal ternary phase Ti2InB2 under pressure
Philosophical Magazine ( IF 1.6 ) Pub Date : 2020-04-22 , DOI: 10.1080/14786435.2020.1754485
Yi X. Wang 1 , Zheng X. Yan 1 , Wei Liu 1 , Gao L. Zhou 1
Affiliation  

ABSTRACT Recently, Wang et al. [Nat. Commun. 10 (2019) 2284] report a new compound, Ti2InB2, a stable boron-based ternary phase in the Ti-In-B system. This predicted compound is successfully synthesised using a solid-state reaction route and its space group is confirmed as (No. 187). In this work, the structural stability, mechanical properties, and thermal conductivity of the new hexagonal ternary phase Ti2InB2 under pressure up to 100 GPa have been carried out with first-principles calculations based on density functional theory. Our calculated lattice parameters in the ground state are consistent well with the theoretical prediction data. The calculations of elastic constants and phonon dispersion curves indicate that Ti2InB2 is mechanically and dynamically stable at least up to 100 GPa. Moreover, the pressure dependent elastic properties, such as bulk modulus B, shear modulus G, transverse sound velocity vt , longitudinal sound velocity vl , and Debye temperature Θ, are successfully obtained. It is found that Ti2InB2 behave in brittle manner under pressure up to 100 GPa. Meanwhile, the anisotropy of the directional linear compressibility and the Young’s modulus under pressure are also analysed for the first time. Finally, the minimum thermal conductivity of Ti2InB2 under different pressures are further evaluated by using both Clark’s model and Cahill’s model. The results show that Ti2InB2 exhibits relatively low thermal conductivity in the ground state and is suitable to be used as thermal insulating materials.

中文翻译:

新型六方三元相Ti2InB2在压力下的结构稳定性、力学性能和热导率

摘要 最近,Wang 等人。[纳特。社区。10 (2019) 2284] 报告了一种新化合物 Ti2InB2,这是 Ti-In-B 体系中稳定的硼基三元相。该预测化合物使用固态反应路线成功合成,其空间群被确认为(No. 187)。在这项工作中,基于密度泛函理论的第一性原理计算对新型六方三元相 Ti2InB2 在高达 100 GPa 的压力下的结构稳定性、机械性能和热导率进行了研究。我们计算出的基态晶格参数与理论预测数据一致。弹性常数和声子色散曲线的计算表明 Ti2InB2 在机械和动态上至少达到 100 GPa 是稳定的。此外,压力相关的弹性特性,例如体积模量 B、剪切模量 G、横向声速 vt 、纵向声速 vl 和德拜温度 Θ,都被成功地获得。发现 Ti2InB2 在高达 100GPa 的压力下表现出脆性。同时,还首次分析了定向线性压缩率的各向异性和压力下的杨氏模量。最后,通过使用克拉克模型和卡希尔模型进一步评估了不同压力下 Ti2InB2 的最小热导率。结果表明,Ti2InB2在基态下表现出较低的热导率,适合用作绝热材料。发现 Ti2InB2 在高达 100GPa 的压力下表现出脆性。同时,还首次分析了定向线性压缩率的各向异性和压力下的杨氏模量。最后,通过使用克拉克模型和卡希尔模型进一步评估了不同压力下 Ti2InB2 的最小热导率。结果表明,Ti2InB2在基态下表现出较低的热导率,适合用作绝热材料。发现 Ti2InB2 在高达 100GPa 的压力下表现出脆性。同时,还首次分析了定向线性压缩率的各向异性和压力下的杨氏模量。最后,通过使用克拉克模型和卡希尔模型进一步评估了不同压力下 Ti2InB2 的最小热导率。结果表明,Ti2InB2在基态下表现出较低的热导率,适合用作绝热材料。使用克拉克模型和卡希尔模型进一步评估了不同压力下 Ti2InB2 的最小热导率。结果表明,Ti2InB2在基态下表现出较低的热导率,适合用作绝热材料。使用克拉克模型和卡希尔模型进一步评估了不同压力下 Ti2InB2 的最小热导率。结果表明,Ti2InB2在基态下表现出较低的热导率,适合用作绝热材料。
更新日期:2020-04-22
down
wechat
bug