当前位置: X-MOL 学术Nucl. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Market Basis for Salt-Cooled Reactors: Dispatchable Heat, Hydrogen, and Electricity with Assured Peak Power Capacity
Nuclear Technology ( IF 1.5 ) Pub Date : 2020-05-14 , DOI: 10.1080/00295450.2020.1743628
Charles W. Forsberg 1
Affiliation  

Abstract Energy markets are changing because of (1) the addition of nondispatchable wind and solar electric generating capacity and (2) the goal of a low-carbon energy system. The large-scale addition of wind and solar photovoltaics results in low wholesale electricity prices at times of high wind and solar output and high prices at times of low wind and solar input. The goal of a low-carbon energy system requires a replacement energy production system with assured peak energy production capacity. To minimize costs, capital-intensive nuclear reactors should operate at base load. To maximize revenue (minimize sales at times of low prices and maximize sales at times of high prices), the power cycle should provide variable heat and electricity. This requires the power cycle to (1) include heat storage that enables peak heat and electricity output that may be several times base-load reactor output and (2) provide assured peak power production. Assured peak power production requires the capability to efficiently burn low-carbon fuels such as hydrogen and biofuels. Alternatively, nuclear systems with base-load reactors can be built to produce peak electricity and storable hydrogen for industry, biofuels, and other markets. All power reactors with appropriate system designs can meet these requirements. The lowest-cost technologies for heat storage, assured peak power production, and hydrogen production require high-temperature heat. This economically favors salt-cooled reactors with the average temperature of delivered heat of about 650°C versus heat delivered at lower average temperatures from other reactors such as light water reactors: 280°C, sodium-cooled reactors: 500°C, and high-temperature helium-cooled reactors: 550°C. Salt-cooled reactors include (1) Fluoride-salt-cooled High-temperature Reactors (FHRs) with solid fuel and clean salt, (2) Molten Salt Reactors (MSRs) with fuel dissolved in the salt, and (3) fusion reactors with salt blankets. Future energy markets, nuclear systems (heat storage, assured peak energy production capacity, and hydrogen production) designed for such markets and the power cycle technologies that economically favor salt reactors are described.

中文翻译:

盐冷反应堆的市场基础:可分配的热量、氢气和电力,确保峰值功率容量

摘要 由于(1)不可调度的风能和太阳能发电能力的增加以及(2)低碳能源系统的目标,能源市场正在发生变化。风能和太阳能光伏发电的大规模增加导致风能和太阳能发电量高时批发电价低,风能和太阳能输入量低时电价高。低碳能源系统的目标需要一个具有保证峰值能源生产能力的替代能源生产系统。为了最大限度地降低成本,资本密集型核反应堆应在基本负荷下运行。为了最大限度地提高收入(在低价时最大限度地减少销售额,在高价时最大限度地提高销售额),电力循环应该提供可变的热量和电力。这要求动力循环 (1) 包括蓄热,使峰值热量和电力输出可能是基本负荷反应堆输出的几倍,以及 (2) 提供有保证的峰值电力生产。确保峰值发电量需要能够有效地燃烧低碳燃料,例如氢和生物燃料。或者,可以建造带有基荷反应堆的核系统,为工业、生物燃料和其他市场生产峰值电力和可储存的氢气。所有具有适当系统设计的动力堆都能满足这些要求。用于蓄热、确保峰值功率生产和制氢的成本最低的技术需要高温热量。这在经济上有利于盐冷反应堆,其传递热量的平均温度约为 650°C,而其他反应堆在较低平均温度下传递的热量,例如轻水反应堆:280°C,钠冷反应堆:500°C 和高- 氦冷反应堆温度:550°C。盐冷反应堆包括 (1) 使用固体燃料和清洁盐的氟化物盐冷高温反应堆 (FHR),(2) 将燃料溶解在盐中的熔盐反应堆 (MSR),以及 (3) 使用固体燃料和清洁盐的聚变反应堆盐毯。描述了为这些市场设计的未来能源市场、核系统(蓄热、保证峰值能源生产能力和氢气生产)以及在经济上有利于盐反应堆的动力循环技术。和高温氦冷反应堆:550°C。盐冷反应堆包括 (1) 使用固体燃料和清洁盐的氟化物盐冷高温反应堆 (FHR),(2) 将燃料溶解在盐中的熔盐反应堆 (MSR),以及 (3) 使用固体燃料和清洁盐的聚变反应堆盐毯。描述了为这些市场设计的未来能源市场、核系统(蓄热、保证峰值能源生产能力和氢气生产)以及在经济上有利于盐反应堆的动力循环技术。和高温氦冷反应堆:550°C。盐冷反应堆包括 (1) 使用固体燃料和清洁盐的氟化物盐冷高温反应堆 (FHR),(2) 将燃料溶解在盐中的熔盐反应堆 (MSR),以及 (3) 使用固体燃料和清洁盐的聚变反应堆盐毯。描述了为这些市场设计的未来能源市场、核系统(蓄热、保证峰值能源生产能力和氢气生产)以及在经济上有利于盐反应堆的动力循环技术。
更新日期:2020-05-14
down
wechat
bug