当前位置: X-MOL 学术Mater. Manuf. Process. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
EDM of high aspect ratio micro-holes on Ti-6Al-4V alloy by synchronizing energy interactions
Materials and Manufacturing Processes ( IF 4.1 ) Pub Date : 2020-06-08 , DOI: 10.1080/10426914.2020.1762207
Ramver Singh 1 , Akshay Dvivedi 1 , Pradeep Kumar 1
Affiliation  

ABSTRACT Electrical discharge machining (EDM) of high aspect ratio (AR) micro-holes on materials like Ti-6Al-4 V alloy is challenging. The ineffective removal of the machining by-products from and replenishment of fresh dielectric medium in the inter-electrode gap (IEG) limit the penetration depth. The approaches suggested in existing literature either complicate the EDM process or increase the operational costs. Moreover, the effectiveness of energy interactions in the IEG affecting the process performance has not been adequately investigated. This research attempts to synchronize effects of energy interactions between the tool electrode, dielectric, and work material in the IEG by controlling the input discharge energy through current and pulse-on-duration, and dissipated energy through pulse-off-duration and lift settings. Experimental indicators like tool penetration rate, machining time, debris morphology, gas-bubble dynamics, and discharge waveforms are employed to expound the non-linear dynamic behavior of the process. Accordingly, the machining of high AR micro-holes is defined into four zones: usual micro-EDM, transition, high-AR EDM, and critical zones. The maximum depth (10 mm) and AR (17.4) ever reported during the micro-EDM of Ti-6Al-4 V alloy was achieved without employing any additional assistance. Thereby, the capabilities of the conventional die-sinking EDM process are improved for machining high AR micro-holes on Ti-6Al-4 V alloy.

中文翻译:

通过同步能量相互作用在 Ti-6Al-4V 合金上加工高深宽比微孔

摘要 在 Ti-6Al-4 V 合金等材料上进行高纵横比 (AR) 微孔的放电加工 (EDM) 具有挑战性。从电极间间隙 (IEG) 中有效去除加工副产品和补充新鲜电介质限制了渗透深度。现有文献中建议的方法要么使 EDM 过程复杂化,要么增加了运营成本。此外,影响过程性能的 IEG 中能量相互作用的有效性尚未得到充分研究。该研究试图通过控制输入放电能量通过电流和脉冲持续时间以及通过脉冲关闭持续时间和提升设置消耗的能量来同步 IEG 中工具电极、电介质和工作材料之间能量相互作用的影响。采用刀具穿透率、加工时间、碎屑形态、气泡动力学和放电波形等实验指标来阐述该过程的非线性动力学行为。相应地,高AR微孔的加工被定义为四个区域:普通微电火花加工区、过渡区、高AR电火花加工区和临界区。在 Ti-6Al-4 V 合金的微 EDM 过程中报告的最大深度 (10 mm) 和 AR (17.4) 是在不使用任何额外辅助的情况下实现的。因此,提高了传统电火花加工工艺在 Ti-6Al-4 V 合金上加工高 AR 微孔的能力。高AR微孔加工定义为四个区域:普通微电火花加工、过渡、高AR电火花加工和临界区。在 Ti-6Al-4 V 合金的微 EDM 过程中报告的最大深度 (10 mm) 和 AR (17.4) 是在不使用任何额外辅助的情况下实现的。因此,提高了传统电火花加工工艺在 Ti-6Al-4 V 合金上加工高 AR 微孔的能力。高AR微孔加工定义为四个区域:普通微电火花加工、过渡、高AR电火花加工和临界区。在 Ti-6Al-4 V 合金的微 EDM 过程中报告的最大深度 (10 mm) 和 AR (17.4) 是在不使用任何额外辅助的情况下实现的。因此,提高了传统电火花加工工艺在 Ti-6Al-4 V 合金上加工高 AR 微孔的能力。
更新日期:2020-06-08
down
wechat
bug