当前位置: X-MOL 学术Sustain. Mater. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Effect of hydrothermal hot-compression method on the antimicrobial performance of green building materials from heterogeneous cellulose wastes
Sustainable Materials and Technologies ( IF 8.6 ) Pub Date : 2020-09-01 , DOI: 10.1016/j.susmat.2020.e00199
Claudia A. Echeverria , Jerome Ozkan , Farshid Pahlevani , Mark Willcox , Veena Sahajwalla

Abstract Flame-retardants and biocides are well-established functional additives that enhance key properties of polymer and porous materials. Conventional additives and their secondary emissions may render materials hazardous in the long-term, incrementing human exposure to a toxic load of persistent bio-cumulative substances in the indoor built environment. The present study developed a novel multifunctional green additive formulated for the optimization of thermoplastic-lignocellulose hybrid sheet materials engineered for indoor building applications. The compound was developed from two marine bio-materials, Kelp Macroalgae (Eklonia spp.) and Bivalve mollusc shells (Veneridae spp.), selected due to their exceptional properties for these functions, as result of the complex mixture of biogenic carbonate/halide/oxide inorganic phases intricately connected through a hierarchical structure. Oxidative flame propagation was investigated under fire conditions and thermal degradation coupled with gas analysis was investigated under inert gas purge for the temperature range 30–1300 °C. The microbial biomass was analysed with culture-dependent and independent methods. The marine panel prototypes exhibited superior flame-retardant characteristics as result of synergistic mechanisms occurring at the solid-gas interface through the disruption of volatiles flame reactions in the gas-phase, endothermic reactions, and self-catalytic activation. This resulted in self-extinguishing, flame-inhibition, slow-flame propagation rate; and the formation of hierarchically porous carbonaceous phase of high-adsorptive capacity. The biodegradation and ecotoxicity analyses indicated very low-moisture absorption and a possible inhibitory effect on microbial development due to the CaCO3/alginate destabilizing effect on the cell membrane. This promising result demonstrates that the synergistic effect of the marine additive has high-potential rendering the novel hybrid materials non-toxic, biodegradation resistant, whilst increasing the recyclability potential at their end-of-life.

中文翻译:

水热热压法对异质纤维素废弃物绿色建材抗菌性能的影响

摘要 阻燃剂和杀菌剂是公认的功能性添加剂,可增强聚合物和多孔材料的关键性能。从长远来看,传统添加剂及其二次排放可能会使材料变得危险,从而增加人类在室内建筑环境中暴露于有毒负荷的持久性生物累积物质。本研究开发了一种新型多功能绿色添加剂,用于优化设计用于室内建筑应用的热塑性木质纤维素混合片材。该化合物是由两种海洋生物材料开发的,海带巨藻 (Eklonia spp.) 和双壳软体动物贝壳 (Veneridae spp.),因其具有这些功能的特殊特性而被选中,由于生物碳酸盐/卤化物/氧化物无机相的复杂混合物通过分层结构错综复杂地连接在一起。在火灾条件下研究了氧化火焰传播,并在惰性气体吹扫下研究了 30-1300 °C 温度范围内的热降解和气体分析。使用依赖于培养和独立的方法分析微生物生物量。由于气相中挥发物火焰反应的破坏、吸热反应和自催化活化,在固气界面发生协同机制,因此海洋面板原型表现出优异的阻燃特性。这导致自熄、抑制火焰、缓慢的火焰传播速度;并形成具有高吸附能力的分级多孔碳质相。生物降解和生态毒性分析表明,由于 CaCO3/藻酸盐对细胞膜的不稳定作用,吸湿性非常低,并且可能对微生物发育产生抑制作用。这一有希望的结果表明,海洋添加剂的协同作用具有很高的潜力,使新型混合材料无毒、抗生物降解,同时增加了其使用寿命结束时的可回收性潜力。
更新日期:2020-09-01
down
wechat
bug