当前位置: X-MOL 学术Eng. Sci. Technol. Int. J. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Design and performance analyses of a fixed wing battery VTOL UAV
Engineering Science and Technology, an International Journal ( IF 5.1 ) Pub Date : 2020-10-01 , DOI: 10.1016/j.jestch.2020.02.002
Özgür Dündar , Mesut Bilici , Tarık Ünler

Abstract The objective of this paper is to explain the design steps and performance analyses including energy consumption of a fixed-wing (FW) vertical take-off and landing (VTOL) unmanned air vehicle (UAV). The vehicle is designed from the beginning with the goal for low take-off weight and high aerodynamic performance. Aerodynamic design steps and sizing of both wing and control surfaces are demonstrated and static stability is fulfilled by evaluating the center of gravity location with respect to neutral point. In addition, power requirements and energy consumptions for take-off, climbing, cruise and landing are evaluated in perspective of flight performances to find out the required endurance for each flight condition. In order to do that selected battery is modelled in Simulink and results are represented. In take-off and landing flight conditions, momentum theory is implemented for vertical flight while the cruise flight is utilized to find out the maximum endurance. Drag calculations in level flight are performed in detail to experience the drawbacks of multi-rotor system including propellers providing vertical flight. Finally, VTOL-FW concept having multi-rotor system with four extra propellers and only fixed wing (FW) concept are compared in terms of endurance. It is found that FW concept without multi-rotor system with four propellers have much more endurance compared to VTOL-FW concept. Manufacturing with three-dimensional printers and flight tests of VTOL-FW UAV will be performed as a future work.

中文翻译:

固定翼电池VTOL无人机的设计与性能分析

摘要 本文的目的是解释固定翼 (FW) 垂直起降 (VTOL) 无人机 (UAV) 的设计步骤和性能分析,包括能耗。该车辆的设计从一开始就以低起飞重量和高空气动力学性能为目标。通过评估相对于中性点的重心位置,展示了机翼和控制面的空气动力学设计步骤和尺寸,并实现了静态稳定性。此外,从飞行性能的角度评估起飞、爬升、巡航和着陆的功率需求和能耗,以找出每种飞行条件所需的续航时间。为了做到这一点,选定的电池在 Simulink 中建模并表示结果。在起降飞行条件下,垂直飞行采用动量理论,巡航飞行用于找出最大续航力。详细执行水平飞行中的阻力计算,以体验多旋翼系统的缺点,包括提供垂直飞行的螺旋桨。最后,VTOL-FW 概念具有带四个额外螺旋桨的多旋翼系统和只有固定翼 (FW) 概念的续航时间进行了比较。发现与 VTOL-FW 概念相比,没有带有四螺旋桨的多旋翼系统的 FW 概念具有更多的耐久性。未来将进行 3D 打印机制造和 VTOL-FW 无人机的飞行测试。详细执行水平飞行中的阻力计算,以体验多旋翼系统的缺点,包括提供垂直飞行的螺旋桨。最后,VTOL-FW 概念具有带四个额外螺旋桨的多旋翼系统和只有固定翼 (FW) 概念的续航时间进行了比较。发现与 VTOL-FW 概念相比,没有带有四螺旋桨的多旋翼系统的 FW 概念具有更多的耐久性。未来将进行 3D 打印机制造和 VTOL-FW 无人机的飞行测试。详细执行水平飞行中的阻力计算,以体验多旋翼系统的缺点,包括提供垂直飞行的螺旋桨。最后,VTOL-FW 概念具有带四个额外螺旋桨的多旋翼系统和只有固定翼 (FW) 概念的续航时间进行了比较。发现与 VTOL-FW 概念相比,没有带有四螺旋桨的多旋翼系统的 FW 概念具有更多的耐久性。未来将进行 3D 打印机制造和 VTOL-FW 无人机的飞行测试。发现与 VTOL-FW 概念相比,没有带有四螺旋桨的多旋翼系统的 FW 概念具有更多的耐久性。未来将进行 3D 打印机制造和 VTOL-FW 无人机的飞行测试。发现与 VTOL-FW 概念相比,没有带有四螺旋桨的多旋翼系统的 FW 概念具有更多的耐久性。未来将进行 3D 打印机制造和 VTOL-FW 无人机的飞行测试。
更新日期:2020-10-01
down
wechat
bug