当前位置: X-MOL 学术Strength Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Numerical-and-Analytical Method for Creep Investigation in Functionally Graded Complex-Shaped Bodies of Rotation
Strength of Materials ( IF 0.7 ) Pub Date : 2020-06-15 , DOI: 10.1007/s11223-020-00170-1
S. N. Sklepus

The spatial axisymmetric creep problem for complex-shaped bodies of rotation from functionally graded materials is considered. For the variational problem statement, the Lagrangian-form functional is defined for kinematically possible displacement rates. For the main unknown creep parameters, namely displacements, stresses, and strains, the Cauchy problem in time scale is formulated for the spatial discretization points. In this case, the initial conditions for the unknown functions are derived by solving the problem of elastic deformation of the body. The numerical-andanalytical method was developed for solving a nonlinear initial boundary-value creep problem based on applying the R-function, Ritz, and Runge–Kutta–Merson methods. The advantages of the proposed method include: the accurate analytical account of the boundary value problem geometry features without their approximation, representation of an approximate solution in the analytical form, and automatic selection of a time step. The creep problem solutions are derived for a hollow straight cylinder and a complex-shaped body of rotation, namely a cylinder with an elliptical notch on the outer surface, loaded by constant internal pressure. The material creep is described by the Norton law. Several variation patterns of the material creep properties along the radial coordinate are considered. The effect of the material gradient properties and geometry on the stress-strain state of bodies of rotation is analyzed. It is shown that the above geometry effect in creep strongly depends on the material properties.

中文翻译:

功能梯度复杂形状旋转体蠕变研究的数值分析方法

考虑功能梯度材料产生的复杂形状旋转体的空间轴对称蠕变问题。对于变分问题陈述,拉格朗日形式的函数定义为运动学上可能的位移速率。对于主要的未知蠕变参数,即位移,应力和应变,针对空间离散点制定了时间尺度上的柯西问题。在这种情况下,通过解决物体的弹性变形问题,可以得出未知函数的初始条件。基于R函数,Ritz和Runge–Kutta–Merson方法,开发了用于解决非线性初始边界值蠕变问题的数值分析方法。该方法的优点包括:精确地分析边界值问题的几何特征,而无需对其进行近似,以解析形式表示近似解以及自动选择时间步长。对于中空的直圆柱体和复杂形状的旋转体(即,在外表面上具有椭圆形切口并受恒定内部压力加载的圆柱体),得出了蠕变问题的解决方案。诺顿定律描述了材料蠕变。考虑了沿径向坐标的材料蠕变特性的几种变化模式。分析了材料梯度特性和几何形状对旋转体应力应变状态的影响。结果表明,上述几何效应对蠕变的影响很大程度上取决于材料的性能。以解析形式表示近似解,并自动选择时间步长。对于中空的直圆柱体和复杂形状的旋转体(即,在外表面上具有椭圆形切口并受恒定内部压力加载的圆柱体),得出了蠕变问题的解决方案。诺顿定律描述了材料蠕变。考虑了沿径向坐标的材料蠕变特性的几种变化模式。分析了材料梯度特性和几何形状对旋转体应力应变状态的影响。结果表明,上述几何效应对蠕变的影响很大程度上取决于材料的性能。以解析形式表示近似解,并自动选择时间步长。对于中空的直圆柱体和复杂形状的旋转体(即,在外表面上具有椭圆形切口并受恒定内部压力加载的圆柱体),得出了蠕变问题的解决方案。诺顿定律描述了材料蠕变。考虑了沿径向坐标的材料蠕变特性的几种变化模式。分析了材料梯度特性和几何形状对旋转体应力应变状态的影响。结果表明,上述几何效应对蠕变的影响很大程度上取决于材料的性能。对于中空的直圆柱体和复杂形状的旋转体(即,在外表面上具有椭圆形切口并受恒定内部压力加载的圆柱体),得出了蠕变问题的解决方案。诺顿定律描述了材料蠕变。考虑了沿径向坐标的材料蠕变特性的几种变化模式。分析了材料梯度特性和几何形状对旋转体应力应变状态的影响。结果表明,上述几何效应对蠕变的影响很大程度上取决于材料的性能。对于中空的直圆柱体和复杂形状的旋转体(即,在外表面上具有椭圆形切口并受恒定内部压力加载的圆柱体),得出了蠕变问题的解决方案。诺顿定律描述了材料蠕变。考虑了沿径向坐标的材料蠕变特性的几种变化模式。分析了材料梯度特性和几何形状对旋转体应力应变状态的影响。结果表明,上述几何效应对蠕变的影响很大程度上取决于材料的性能。考虑了沿径向坐标的材料蠕变特性的几种变化模式。分析了材料梯度特性和几何形状对旋转体应力应变状态的影响。结果表明,上述几何效应对蠕变的影响很大程度上取决于材料的性能。考虑了沿径向坐标的材料蠕变特性的几种变化模式。分析了材料梯度特性和几何形状对旋转体应力应变状态的影响。结果表明,上述几何效应对蠕变的影响很大程度上取决于材料的性能。
更新日期:2020-06-15
down
wechat
bug