当前位置: X-MOL 学术IEEE Trans. Elect. Dev. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Microcantilever Printed Back-to-Back ZnO Single-Nanowire Schottky Diodes
IEEE Transactions on Electron Devices ( IF 2.9 ) Pub Date : 2020-08-01 , DOI: 10.1109/ted.2020.3002733
Vimal Kumar Singh Yadav , S. Raveesh , Thomas T. Daniel , Roy Paily

This article reports the fabrication of zinc-oxide (ZnO) single-nanowire (SNW)-based back-to-back Schottky diodes (BBSDs) using microcantilever-printed AgNP contact pads. ZnO SNWs have been placed on a SiO2/Si surface by dropcasting an optimized dispersion of ZnO nanowires (NWs) in deionized (DI) water. The microcantilever-printing process has been used to overlap the surface of the ZnO NW with the AgNP pads. The electrical response of the printed diodes has been verified with an analytical model based on the thermionic emission theory. Printed-Schottky diodes have been fabricated with varying channel lengths of ZnO SNW, and among them, the typical ideality factor of ~2.4, the lowest Schottky barrier height of 0.21 eV for the positive voltage sweep and 0.17 eV for the negative voltage sweep, the ${I}_{ \mathrm{\scriptscriptstyle ON}}/{I}_{ \mathrm{\scriptscriptstyle OFF}}$ ratio in the order of $\sim 10^{{3}}$ $10^{{4}}$ , the lowest series resistance of 30 $\text{k}\Omega $ , and the fastest turn-on voltage of 50 mV have been obtained. The reported fabrication process is simple, reproducible, and repeatable and of low cost in nature.

中文翻译:

微悬臂印刷背对背 ZnO 单纳米线肖特基二极管

本文报告了使用微悬臂印刷的 AgNP 接触垫制造基于氧化锌 (ZnO) 单纳米线 (SNW) 的背靠背肖特基二极管 (BBSD)。通过在去离子 (DI) 水中滴铸优化的 ZnO 纳米线 (NW) 分散体,已将 ZnO SNW 放置在 SiO 2 /Si 表面上。微悬臂印刷工艺已用于将 ZnO NW 的表面与 AgNP 焊盘重叠。已使用基于热电子发射理论的分析模型验证了印刷二极管的电响应。印刷肖特基二极管已经制造出具有不同沟道长度的 ZnO SNW,其中典型的理想因子约为 2.4,正电压扫描的最低肖特基势垒高度为 0.21 eV,负电压扫描的最低肖特基势垒高度为 0.17 eV, ${I}_{ \mathrm{\scriptscriptstyle ON}}/{I}_{ \mathrm{\scriptscriptstyle OFF}}$ 比例为 $\sim 10^{{3}}$ —— $10^{{4}}$ ,最低串联电阻30 $\text{k}\Omega $ ,并获得了50 mV的最快开启电压。报道的制造过程简单、可重复、可重复且成本低。
更新日期:2020-08-01
down
wechat
bug