当前位置: X-MOL 学术Journal of Modern Power Systems and Clean Energy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Faulty Feeder Identification and Fault Area Localization in Resonant Grounding System Based on Wavelet Packet and Bayesian Classifier
Journal of Modern Power Systems and Clean Energy ( IF 5.7 ) Pub Date : 2020-06-02 , DOI: 10.35833/mpce.2019.000051
Jingwen Chen , Enliang Chu , Yingchun Li , Baoji Yun , Hongshe Dang , Yali Yang

Accurate fault area localization is a challenging problem in resonant grounding systems (RGSs). Accordingly, this paper proposes a novel two-stage localization method for single-phase earth faults in RGSs. Firstly, a faulty feeder identification algorithm based on a Bayesian classifier is proposed. Three characteristic parameters of the RGS (the energy ratio, impedance factor, and energy spectrum entropy) are calculated based on the zero-sequence current (ZSC) of each feeder using wavelet packet transformations. Then, the values of three parameters are sent to a pre-trained Bayesian classifier to recognize the exact fault mode. With this result, the faulty feeder can be finally identified. To find the exact fault area on the faulty feeder, a localization method based on the similarity comparison of dominant frequency-band waveforms is proposed in an RGS equipped with feeder terminal units (FTUs). The FTUs can provide the information on the ZSC at their locations. Through wavelet-packet transformation, ZSC dominant frequency-band waveforms can be obtained at all FTU points. Similarities of the waveforms of characteristics at all FTU points are calculated and compared. The neighboring FTU points with the maximum diversity are the faulty sections finally determined. The proposed method exhibits higher accuracy in both faulty feeder identification and fault area localization compared to the previous methods. Finally, the effectiveness of the proposed method is validated by comparing simulation and experimental results.

中文翻译:

基于小波包和贝叶斯分类器的谐振接地系统故障馈线识别与故障区域定位

在谐振接地系统(RGS)中,准确的故障区域定位是一个具有挑战性的问题。因此,本文提出了一种新颖的RGSs单相接地故障两阶段定位方法。首先,提出了一种基于贝叶斯分类器的故障馈线识别算法。使用小波包变换基于每个馈线的零序电流(ZSC)计算RGS的三个特征参数(能量比,阻抗因子和能谱熵)。然后,将三个参数的值发送到预训练的贝叶斯分类器,以识别确切的故障模式。结果,可以最终确定故障的进纸器。要找到有故障的进纸器上的确切故障区域,在配备馈线终端单元(FTU)的RGS中,提出了一种基于主频带波形相似度比较的定位方法。FTU可以在其位置提供有关ZSC的信息。通过小波包变换,可以在所有FTU点获得ZSC主导频带波形。计算并比较所有FTU点的特性波形的相似度。具有最大分集的相邻FTU点是最终确定的故障区域。与以前的方法相比,该方法在故障馈线识别和故障区域定位方面均具有更高的准确性。最后,通过比较仿真和实验结果验证了该方法的有效性。FTU可以在其位置提供有关ZSC的信息。通过小波包变换,可以在所有FTU点获得ZSC主导频带波形。计算并比较所有FTU点的特性波形的相似度。具有最大分集的相邻FTU点是最终确定的故障区域。与以前的方法相比,该方法在故障馈线识别和故障区域定位方面均具有更高的准确性。最后,通过比较仿真和实验结果验证了该方法的有效性。FTU可以在其位置提供有关ZSC的信息。通过小波包变换,可以在所有FTU点获得ZSC主导频带波形。计算并比较所有FTU点的特性波形的相似度。具有最大分集的相邻FTU点是最终确定的故障区域。与以前的方法相比,该方法在故障馈线识别和故障区域定位方面均具有更高的准确性。最后,通过比较仿真和实验结果验证了该方法的有效性。计算并比较所有FTU点的特性波形的相似度。具有最大分集的相邻FTU点是最终确定的故障区域。与以前的方法相比,该方法在故障馈线识别和故障区域定位方面均具有更高的准确性。最后,通过比较仿真和实验结果验证了该方法的有效性。计算并比较所有FTU点的特性波形的相似度。具有最大分集的相邻FTU点是最终确定的故障区域。与以前的方法相比,该方法在故障馈线识别和故障区域定位方面均具有更高的准确性。最后,通过比较仿真和实验结果验证了该方法的有效性。
更新日期:2020-07-24
down
wechat
bug