当前位置: X-MOL 学术Pattern Recogn. Lett. › 论文详情
RefineU-Net: Improved U-Net with progressive global feedbacks and residual attention guided local refinement for medical image segmentation
Pattern Recognition Letters ( IF 3.255 ) Pub Date : 2020-07-24 , DOI: 10.1016/j.patrec.2020.07.013
Dongyun Lin; Yiqun Li; Tin Lay Nwe; Sheng Dong; Zaw Min Oo

Motivated by the recent advances in medical image segmentation using a fully convolutional network (FCN) called U-Net and its modified variants, we propose a novel improved FCN architecture called RefineU-Net. The proposed RefineU-Net consists of three modules: encoding module (EM), global refinement module (GRM) and local refinement module (LRM). EM is backboned by pretrained VGG-16 using ImageNet. GRM is proposed to generate intermediate layers in the skip connections in U-Net. It progressively upsamples the top side output of EM and fuses the resulted upsampled features with the side outputs of EM at each resolution level. Such fused features combine the global context information in shallow layers and the semantic information in deep layers for global refinement. Subsequently, to facilitate local refinement, LRM is proposed using residual attention gate (RAG) to generate discriminative attentive features to be concatenated with the decoded features in the expansive path of U-Net. Three modules are trained jointly in an end-to-end manner thereby both global and local refinement are performed complementarily. Extensive experiments conducted on four public datasets of polyp and skin lesion segmentation show the superiority of the proposed RefineU-Net to multiple state-of-the-art related methods.

更新日期:2020-07-31

 

全部期刊列表>>
欢迎访问IOP中国网站
自然职场线上招聘会
GIANT
产业、创新与基础设施
自然科研线上培训服务
材料学研究精选
胸腔和胸部成像专题
屿渡论文,编辑服务
何川
苏昭铭
陈刚
姜涛
李闯创
李刚
北大
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
天合科研
x-mol收录
上海纽约大学
张健
陈芬儿
厦门大学
史大永
吉林大学
卓春祥
张昊
杨中悦
试剂库存
down
wechat
bug