当前位置: X-MOL 学术J. Russ. Laser Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Numerical Simulation of Ni-Like Xe-Plasma Dynamics and Laser Gain in a Low-Inductive Capillary Discharge
Journal of Russian Laser Research ( IF 0.7 ) Pub Date : 2020-07-24 , DOI: 10.1007/s10946-020-09895-5
I. A. Artyukov , V. A. Burtsev , R. M. Feshchenko , N. V. Kalinin

X-ray lasers based on transitions in highly-charged Ni-like ions generating in the “water window” wavelength range can be pumped by compact laboratory discharge sources. In this paper, we report the results of numerical simulations of the plasma dynamics and kinetics in an X-ray laser based on transitions in Ni-like xenon ions. The laser active medium is created by an extended low-inductive high-current Z-discharge capable of producing two successive electrical pulses. The nonequilibrium multicharged ion-plasma dynamics is studied numerically using a nonstationary 1D two-temperature radiation (MHD) model, which describes plasma hydrodynamics, nonstationary ionization, transfer of the continuum and line radiation, as well as processes in the pumping electrical circuit. The ionicenergy-level populations are calculated in the quasistationary approximation. The simulation results allowed to determine the electrical and energy-pumping parameters needed to obtain a weak signal gain for the working transitions of the order of g+ 1 cm1. We demonstrate that plasma with the electronic temperature of more than 400 eV and the density of more than 1019 cm3 can be created by a low inductive two-step discharge with peak current exceeding 200 kA.

中文翻译:

低电感毛细管放电中镍样氙气等离子体动力学和激光增益的数值模拟

基于紧凑的实验室放电源,可以泵浦基于在“水窗”波长范围内生成的高电荷Ni类离子的跃迁的X射线激光。在本文中,我们报告了基于Ni形氙离子跃迁的X射线激光等离子体动力学和动力学的数值模拟结果。激光活性介质由能够产生两个连续电脉冲的扩展的低电感大电流Z放电产生。使用非平稳的一维二维温度辐射(MHD)模型对非平衡多电荷离子等离子体动力学进行了数值研究,该模型描述了等离子体流体动力学,非平稳电离,连续谱和线辐射的传输以及泵浦电路中的过程。离子能级总体以准稳态近似计算。仿真结果可以确定所需的电和能量泵参数,以获得工作级为2的数量级的弱信号增益。g + 〜1 cm - 1。我们证明,通过峰值电流超过200 kA的低电感性两步放电,可以产生电子温度超过400 eV且密度超过10 19 cm - 3的等离子体。
更新日期:2020-07-24
down
wechat
bug