当前位置: X-MOL 学术Phys. Earth Planet. Inter. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Discriminating lower mantle composition
Physics of the Earth and Planetary Interiors ( IF 2.3 ) Pub Date : 2020-11-01 , DOI: 10.1016/j.pepi.2020.106552
C. Houser , J.W. Hernlund , J. Valencia-Cardona , R.M. Wentzcovitch

Abstract Constraining Earth's bulk composition is fundamental to understanding our planet's formation and evolution. While the lower mantle accounts for a majority of the bulk silicate Earth, it is also the least accessible. As experimental and theoretical mineral physics constraints on mineral elasticity at lower mantle temperatures and pressures have improved, comparisons between predicted seismic velocity and density profiles for hypothesized bulk compositions and 1D seismic models have become commonplace. However, the degree to which a given composition is a better or worse fit than another composition is not always reported, nor are the influences of the assumed temperature profile and other uncertainties discussed. Here we compare seismic velocities and densities for perovskitite, pyrolite, and harzburgite bulk compositions calculated using advanced ab initio techniques to explore the extent to which the associated uncertainties affect our ability to distinguish between candidate compositions. We find that predicted differences between model compositions are often smaller than the influence of temperature uncertainties and therefore these comparisons lack discriminatory power. The inability to distinguish between compositions is largely due to the high sensitivity of seismic properties to temperature accompanied by uncertainties in the mantle geotherm, coupled with diminished sensitivity of seismic velocity to composition toward the base of the mantle. An important exception is the spin transition in (Mg,Fe)O-ferropericlase, which is predicted to give a distinct variation in compressional wave velocity that should distinguish between relatively ferro-magnesian and silica-rich compositions. However, the absence of an apparent spin transition signature in global 1D seismic profiles is a significant unresolved issue in geophysics, and it has important geochemical implications. The approach we present here for establishing discriminatory power for such comparisons can be applied to any estimate of seismic velocities and associated uncertainties, and offers a straightforward tool to evaluate the robustness of model comparisons.

中文翻译:

区分下地幔成分

摘要 限制地球的整体成分是了解地球形成和演化的基础。虽然下地幔占大部分硅酸盐地球,但它也是最不容易接近的。随着在较低地幔温度和压力下对矿物弹性的实验和理论矿物物理学约束得到改善,假设的整体成分的预测地震速度和密度剖面与一维地震模型之间的比较变得司空见惯。然而,并不总是报告给定组合物比另一种组合物更好或更差的拟合程度,也没有讨论假设温度分布和其他不确定性的影响。在这里,我们比较了钙钛矿、热石、和使用先进的 ab initio 技术计算的方辉石整体成分,以探索相关的不确定性影响我们区分候选成分的能力的程度。我们发现模型组成之间的预测差异通常小于温度不确定性的影响,因此这些比较缺乏辨别力。无法区分成分主要是由于地震特性对温度的高敏感性伴随着地幔地温的不确定性,加上地震速度对地幔底部成分的敏感性降低。一个重要的例外是 (Mg,Fe)O-四氧化三铁中的自旋转变,预计这会导致压缩波速度的明显变化,从而区分相对铁镁和富含二氧化硅的成分。然而,在全球一维地震剖面中缺乏明显的自旋跃迁特征是地球物理学中一个重要的未解决问题,它具有重要的地球化学意义。我们在此提出的用于建立此类比较的判别力的方法可应用于任何地震速度和相关不确定性的估计,并提供了一种直接的工具来评估模型比较的稳健性。 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
更新日期:2020-11-01
down
wechat
bug