当前位置: X-MOL 学术J. Mater. Sci. Mater. Med. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Microfabrication of a biomimetic arcade-like electrospun scaffold for cartilage tissue engineering applications.
Journal of Materials Science: Materials in Medicine ( IF 3.7 ) Pub Date : 2020-07-23 , DOI: 10.1007/s10856-020-06407-4
André F Girão 1 , Ângela Semitela 1 , Andreia Leal Pereira 1 , António Completo 1 , Paula A A P Marques 1
Affiliation  

In recent years, the engineering of biomimetic cellular microenvironments has emerged as a top priority for regenerative medicine, being the in vitro recreation of the arcade-like cartilaginous tissue one of the most critical challenges due to the notorious absence of cost- and time-efficient microfabrication techniques capable of building 3D fibrous scaffolds with precise anisotropic properties. Taking this into account, we suggest a feasible and accurate methodology that uses a sequential adaptation of an electrospinning-electrospraying set up to construct a hierarchical system comprising both polycaprolactone (PCL) fibres and polyethylene glycol sacrificial microparticles. After porogen leaching, the bi-layered PCL scaffold was capable of presenting not only a depth-dependent fibre orientation similar to natural cartilage, but also mechanical features and porosity proficient to encourage an enhanced cell response. In fact, cell viability studies confirmed the biocompatibility of the scaffold and its ability to guarantee suitable cell adhesion, proliferation and migration throughout the 3D anisotropic fibrous network during 21 days of culture. Additionally, likewise the hierarchical relationship between chondrocytes and their extracellular matrix, the reported PCL scaffold was able to induce depth-dependent cell-material interactions responsible for promoting a spatial modulation of the morphology, alignment and density of the cells in vitro.



中文翻译:

仿生的类似拱廊的电纺支架的微细加工,用于软骨组织工程应用。

近年来,仿生细胞微环境的工程设计已成为再生医学的重中之重,由于众所周知的缺乏成本和时间效率,对拱廊状软骨组织进行体外再生是最关键的挑战之一能够制造具有精确各向异性特性的3D纤维支架的微细加工技术。考虑到这一点,我们建议一种可行且准确的方法,该方法使用电纺丝电喷雾设置的顺序调整来构建包含聚己内酯(PCL)纤维和聚乙二醇牺牲微粒的分层系统。浸出孔后,双层PCL支架不仅能够表现出与天然软骨相似的深度依赖性纤维取向,而且机械特性和孔隙率足以促进增强的细胞反应。实际上,细胞生存力研究证实了支架的生物相容性及其在培养21天期间保证适当的细胞粘附,增殖和在整个3D各向异性纤维网络中迁移的能力。另外,同样地,软骨细胞与其细胞外基质之间的等级关系,所报道的PCL支架能够诱导深度依赖的细胞-材料相互作用,其负责促进体外细胞的形态,排列和密度的空间调节。在21天的培养过程中,整个3D各向异性纤维网络中都有增殖和迁移。另外,同样地,软骨细胞与其细胞外基质之间的等级关系,所报道的PCL支架能够诱导深度依赖的细胞-材料相互作用,其负责促进体外细胞的形态,排列和密度的空间调节。在21天的培养过程中,整个3D各向异性纤维网络中都有增殖和迁移。另外,同样地,软骨细胞与其细胞外基质之间的等级关系,所报道的PCL支架能够诱导深度依赖的细胞-材料相互作用,其负责促进体外细胞的形态,排列和密度的空间调节。

更新日期:2020-07-23
down
wechat
bug