当前位置: X-MOL 学术Int. J. Thermophys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The Electric Field and Microchannel Type Effects on H2O/Fe3O4 Nanofluid Boiling Process: Molecular Dynamics Study
International Journal of Thermophysics ( IF 2.2 ) Pub Date : 2020-07-23 , DOI: 10.1007/s10765-020-02714-8
Kamal Ghani Dehkordi , Arash Karimipour , Masoud Afrand , Davood Toghraie , Amir Homayoon Meghdadi Isfahani

In this computational research, we study the electric field and microchannel type effects on H2O/Fe3O4 nanofluid dynamical manner. The dynamical characteristics of this atomic structure are calculated using molecular dynamics method and we reported physical parameters such as total temperature, total energy, radial distribution function, velocity, density and temperature profiles of H2O/Fe3O4 nanofluid with 2 spherical nanoparticles. Physically, inserting external electric field causes phase transition (boiling process) in H2O/Fe3O4 nanofluid in shorter simulation time. Further, our results show that magnitude of external electric field is a significant parameter in nanofluid dynamical manner in microchannels. By external electric field magnitude increasing, the highest rate of velocity, temperature and density of nanofluid enhance to 0.0071 A·ps−1, 714 K and 0.038 atom·A−3 rates, numerically. Further, by microchannel atomic type variation from Pt to Au one, the rate of temperature and velocity of nanofluids reach to maximum rate at Au microchannel. So we conclude that phase transition of nanofluid in Au microchannel occurs in shorter MD simulation time.

中文翻译:

电场和微通道类型对 H2O/Fe3O4 纳米流体沸腾过程的影响:分子动力学研究

在这项计算研究中,我们研究了电场和微通道类型对 H2O/Fe3O4 纳米流体动力学方式的影响。使用分子动力学方法计算该原子结构的动力学特性,并报告了具有 2 个球形纳米粒子的 H2O/Fe3O4 纳米流体的总温度、总能量、径向分布函数、速度、密度和温度分布等物理参数。在物理上,插入外部电场会在更短的模拟时间内导致 H2O/Fe3O4 纳米流体中的相变(沸腾过程)。此外,我们的结果表明,外部电场的大小是微通道中纳米流体动力学方式的重要参数。随着外部电场强度的增加,纳米流体的最高速度、温度和密度增加到0。0071 A·ps−1、714 K 和 0.038 atom·A−3 速率,数值。此外,通过从 Pt 到 Au 的微通道原子类型变化,纳米流体的温度速率和速度在 Au 微通道处达到最大速率。因此我们得出结论,Au 微通道中纳米流体的相变发生在更短的 MD 模拟时间。
更新日期:2020-07-23
down
wechat
bug