当前位置: X-MOL 学术J. Phys. Condens. Matter › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Dynamics of impurity in the environment of Dirac fermions
Journal of Physics: Condensed Matter ( IF 2.7 ) Pub Date : 2020-07-22 , DOI: 10.1088/1361-648x/ab9d4d
Ajit Kumar Sorout 1, 2 , Surajit Sarkar 2 , Suhas Gangadharaiah 2
Affiliation  

We study the dynamics of a non-magnetic impurity interacting with the surface states of a 3D and 2D topological insulator (TI). Employing the linked cluster technique we develop a formalism for obtaining the Green's function of the mobile impurity interacting with the low-energy Dirac fermions. We show that for the non-recoil case in 2D, the Green's function in the long-time limit has a power-law decay in time implying the breakdown of the quasiparticle description of the impurity. The spectral function in turn exhibits a weak power-law singularity. In the recoil case, however, the reduced phase-space for scattering processes implies a non-zero quasiparticle weight and the presence of a coherent part in the spectral function. Performing a weak coupling analysis we nd that the mobility of the impurity reveals a $T^{-3/2}$ divergence at low temperatures. In addition, we show that the Green's function of an impurity interacting with the helical edge modes (surface states of 2D TI) exhibit power-law decay in the long-time limit for both the non-recoil and recoil case (with low impurity momentum), indicating the break down of the quasiparticle picture. However, for impurity with high momentum, the quasiparticle picture is restored. The mobility of the heavy impurity interacting with the helical edge modes exhibits unusual behaviour. It has an exponential divergence at low temperatures which can be tuned to a power-law divergence ($T^{-4}$) by the application of the magnetic field.

中文翻译:

狄拉克费米子环境中的杂质动力学

我们研究了与 3D 和 2D 拓扑绝缘体 (TI) 的表面状态相互作用的非磁性杂质的动力学。利用链接簇技术,我们开发了一种形式主义,用于获得移动杂质与低能狄拉克费米子相互作用的格林函数。我们表明,对于 2D 中的非反冲情况,长时间限制中的格林函数具有时间幂律衰减,这意味着杂质的准粒子描述被破坏。谱函数又表现出弱幂律奇点。然而,在反冲情况下,散射过程的减小的相空间意味着非零准粒子权重和光谱函数中相干部分的存在。进行弱耦合分析,我们发现杂质的迁移率在低温下显示出 $T^{-3/2}$ 发散。此外,我们表明,对于非反冲和反冲情况(具有低杂质动量),与螺旋边缘模式(2D TI 的表面状态)相互作用的杂质的格林函数在长时间限制内表现出幂律衰减),表示准粒子图的分解。然而,对于具有高动量的杂质,准粒子图像被恢复。与螺旋边缘模式相互作用的重杂质的迁移率表现出不寻常的行为。它在低温下具有指数发散,可以通过施加磁场将其调整为幂律发散 ($T^{-4}$)。与螺旋边缘模式(2D TI 的表面状态)相互作用的杂质的函数在非反冲和反冲情况(具有低杂质动量)的长时间限制中表现出幂律衰减,表明准粒子图像。然而,对于具有高动量的杂质,准粒子图像被恢复。与螺旋边缘模式相互作用的重杂质的迁移率表现出不寻常的行为。它在低温下具有指数发散,可以通过施加磁场将其调整为幂律发散 ($T^{-4}$)。与螺旋边缘模式(2D TI 的表面状态)相互作用的杂质的函数在非反冲和反冲情况(具有低杂质动量)的长时间限制中表现出幂律衰减,表明准粒子图像。然而,对于具有高动量的杂质,准粒子图像被恢复。与螺旋边缘模式相互作用的重杂质的迁移率表现出不寻常的行为。它在低温下具有指数发散,可以通过施加磁场将其调整为幂律发散 ($T^{-4}$)。对于具有高动量的杂质,准粒子图像被还原。与螺旋边缘模式相互作用的重杂质的迁移率表现出不寻常的行为。它在低温下具有指数发散,可以通过施加磁场将其调整为幂律发散 ($T^{-4}$)。对于具有高动量的杂质,准粒子图像被还原。与螺旋边缘模式相互作用的重杂质的迁移率表现出不寻常的行为。它在低温下具有指数发散,可以通过施加磁场将其调整为幂律发散 ($T^{-4}$)。
更新日期:2020-07-22
down
wechat
bug