当前位置: X-MOL 学术Chem. Soc. Rev. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Molecular catalysis of CO2 reduction: recent advances and perspectives in electrochemical and light-driven processes with selected Fe, Ni and Co aza macrocyclic and polypyridine complexes.
Chemical Society Reviews ( IF 40.4 ) Pub Date : 2020-07-22 , DOI: 10.1039/d0cs00218f
E Boutin 1 , L Merakeb 1 , B Ma 1 , B Boudy 1 , M Wang 1 , J Bonin 1 , E Anxolabéhère-Mallart 1 , M Robert 2
Affiliation  

Earth-abundant Fe, Ni, and Co aza macrocyclic and polypyridine complexes have been thoroughly investigated for CO2 electrochemical and visible-light-driven reduction. Since the first reports in the 1970s, an enormous body of work has been accumulated regarding the two-electron two-proton reduction of the gas, along with mechanistic and spectroscopic efforts to rationalize the reactivity and establish guidelines for structure–reactivity relationships. The ability to fine tune the ligand structure and the almost unlimited possibilities of designing new complexes have led to highly selective and efficient catalysts. Recent efforts toward developing hybrid systems upon combining molecular catalysts with conductive or semi-conductive materials have converged to high catalytic performances in water solutions, to the inclusion of these catalysts into CO2 electrolyzers and photo-electrochemical devices, and to the discovery of catalytic pathways beyond two electrons. Combined with the continuous mechanistic efforts and new developments for in situ and in operando spectroscopic studies, molecular catalysis of CO2 reduction remains a highly creative approach.

中文翻译:


CO2 还原的分子催化:选定 Fe、Ni 和 Co 氮杂大环和聚吡啶配合物的电化学和光驱动过程的最新进展和前景。



地球上丰富的 Fe、Ni 和 Co 氮杂大环和聚吡啶配合物已被彻底研究用于 CO 2电化学和可见光驱动的还原。自 20 世纪 70 年代第一份报告以来,关于气体的二电子二质子还原,以及合理化反应性和建立结构-反应性关系指南的机械和光谱工作,已经积累了大量的工作。微调配体结构的能力和设计新配合物的几乎无限的可能性导致了高选择性和高效的催化剂。最近开发将分子催化剂与导电或半导体材料相结合的混合系统的努力已集中在水溶液中的高催化性能、将这些催化剂纳入CO 2电解槽和光电化学装置以及催化途径的发现超过两个电子。结合持续的机械努力以及原位操作光谱研究的新进展,CO 2还原的分子催化仍然是一种高度创造性的方法。
更新日期:2020-08-17
down
wechat
bug