当前位置: X-MOL 学术J. Geophys. Res. Planets › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A Joint Experimental‐Modeling Investigation of the Effect of Light Elements on Dynamos in Small Planets and Moons
Journal of Geophysical Research: Planets ( IF 3.9 ) Pub Date : 2020-07-21 , DOI: 10.1029/2020je006492
Anne Pommier 1 , Christopher J. Davies 2 , Rong Zhang 1
Affiliation  

We present a joint experimental‐modeling investigation of core cooling in small terrestrial bodies. Significant amounts of light elements (S, O, Mg, Si) may compose the metallic cores of terrestrial planets and moons. However, the effect of multiple light elements on transport properties, in particular, electrical resistivity and thermal conductivity, is not well constrained. Electrical experiments were conducted at 10 GPa and up to 1850 K on high‐purity powder mixtures in the Fe‐S‐O(±Mg, ±Si) systems using the multianvil apparatus and the four‐electrode technique. The sample compositions contained 5 wt.% S, up to 3 wt.% O, up to 2 wt.% Mg, and up to 1 wt.% Si. We observe that above the eutectic temperature, electrical resistivity is significantly sensitive to the nature and amount of light elements. For each composition, thermal conductivity‐temperature equations were estimated using the experimental electrical results and a modified Wiedemann‐Franz law. These equations were implemented in a thermochemical core cooling model to study the evolution of the dynamo. Modeling results suggest that bulk chemistry significantly affects the entropy available to power dynamo action during core cooling. In the case of Mars, the presence of oxygen would delay the dynamo cessation by up to 1 Gyr compared to an O‐free, Fe‐S core. Models with 3 wt% O can be reconciled with the inferred cessation time of the Martian dynamo if the core‐mantle boundary heat flow falls from >2 TW to ~0.1 TW in the first 0.5 Gyr following core formation.

中文翻译:

联合实验模型研究轻元素对小行星和月球中发电机的影响

我们提出了一个联合实验模型,研究了小型地面物体的核心冷却。大量轻元素(S,O,Mg,Si)可能构成地球行星和卫星的金属核。然而,没有很好地约束多个轻元素对传输性能,特别是电阻率和导热率的影响。使用多砧装置和四电极技术在Fe-S-O(±Mg,±Si)系统中对高纯度粉末混合物进行了10 GPa和高达1850 K的电学实验。样品组合物包含5重量%的S,至多3重量%的O,至多2重量%的Mg和至多1重量%的Si。我们观察到,在共晶温度以上,电阻率对轻元素的性质和数量非常敏感。对于每种成分,热导率-温度方程是使用实验电学结果和修改的Wiedemann-Franz定律估算的。在热化学堆芯冷却模型中实施了这些方程式,以研究发电机的演变。建模结果表明,主体化学在堆芯冷却期间会显着影响可用于驱动发电机动作的熵。就火星而言,与不含O的Fe-S核心相比,氧气的存在将使发电机停止延迟最多1 Gyr。如果芯形成后的前0.5 Gyr,芯-幔边界热流从> 2 TW下降到〜0.1 TW,则O含量为3 wt%的模型可以与火星发电机的停止时间一致。在热化学堆芯冷却模型中实施了这些方程式,以研究发电机的演变。建模结果表明,主体化学在堆芯冷却期间会显着影响可用于驱动发电机动作的熵。就火星而言,与不含O的Fe-S核心相比,氧气的存在将使发电机停止延迟最多1 Gyr。如果芯形成后的前0.5 Gyr,芯-幔边界热流从> 2 TW下降到〜0.1 TW,则O含量为3 wt%的模型可以与火星发电机的停止时间一致。在热化学堆芯冷却模型中实施了这些方程式,以研究发电机的演变。建模结果表明,主体化学在堆芯冷却期间会显着影响可用于驱动发电机动作的熵。就火星而言,与不含O的Fe-S核心相比,氧气的存在将使发电机停止延迟最多1 Gyr。如果芯形成后的前0.5 Gyr,芯-幔边界热流从> 2 TW下降到〜0.1 TW,则O含量为3 wt%的模型可以与火星发电机的停止时间一致。与不含O的Fe-S磁芯相比,氧气的存在将使发电机停止运转最多延迟1 Gyr。如果芯形成后的前0.5 Gyr,芯-幔边界热流从> 2 TW下降到〜0.1 TW,则O含量为3 wt%的模型可以与火星发电机的停止时间一致。与不含O的Fe-S磁芯相比,氧气的存在将使发电机停止运转最多延迟1 Gyr。如果芯形成后的前0.5 Gyr,芯-幔边界热流从> 2 TW下降到〜0.1 TW,则O含量为3 wt%的模型可以与火星发电机的停止时间一致。
更新日期:2020-08-10
down
wechat
bug