当前位置: X-MOL 学术Adv. Energy Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Ultrathin Perovskite Monocrystals Boost the Solar Cell Performance
Advanced Energy Materials ( IF 24.4 ) Pub Date : 2020-07-21 , DOI: 10.1002/aenm.202000453
Wenchi Kong 1, 2 , Shiwei Wang 3 , Feng Li 4 , Chen Zhao 1, 2 , Jun Xing 1, 2 , Yuting Zou 1, 2 , Zhi Yu 1, 2 , Chun‐Ho Lin 5 , Yuwei Shan 1, 2 , Yu Hang Lai 1, 2 , Qingfeng Dong 6 , Tom Wu 5 , Weili Yu 1, 2 , Chunlei Guo 7
Affiliation  

Grains and grain boundaries play key roles in determining halide perovskite‐based optoelectronic device performance. Halide perovskite monocrystalline solids with large grains, smaller grain boundaries, and uniform surface morphology improve charge transfer and collection, suppress recombination loss, and thus are highly favorable for developing efficient solar cells. To date, strategies of synthesizing high‐quality thin monocrystals (TMCs) for solar cell applications are still limited. Here, by combining the antisolvent vapor‐assisted crystallization and space‐confinement strategies, high‐quality millimeter sized TMCs of methylammonium lead iodide (MAPbI3) perovskites with controlled thickness from tens of nanometers to several micrometers have been fabricated. The solar cells based on these MAPbI3 TMCs show power conversion efficiency (PCE) of 20.1% which is significantly improved compared to their polycrystalline counterparts (PCE) of 17.3%. The MAPbI3 TMCs show large grain size, uniform surface morphology, high hole mobility (up to 142 cm2 V−1 s−1), as well as low trap (defect) densities. These properties suggest that TMCs can effectively suppress the radiative and nonradiative recombination loss, thus provide a promising way for maximizing the efficiency of perovskite solar cells.

中文翻译:

超薄钙钛矿单晶提高了太阳能电池的性能

晶粒和晶界在决定基于卤化物钙钛矿的光电器件性能中起着关键作用。具有大晶粒,较小晶界和均匀表面形态的卤化钙钛矿单晶固体可改善电荷转移和收集,抑制复合损失,因此非常适合开发高效的太阳能电池。迄今为止,用于太阳能电池的合成高质量薄单晶(TMC)的策略仍然受到限制。在这里,通过结合反溶剂蒸汽辅助结晶和空间限制策略,制造了质量毫米级的甲基铵碘化铅(MAPbI 3)钙钛矿,其厚度从几十纳米到几微米不等。基于这些MAPbI的太阳能电池3个TMC的功率转换效率(PCE)为20.1%,相比其多晶对应物(PCE)的17.3%有了显着提高。MAPbI 3 TMC显示出较大的晶粒尺寸,均匀的表面形态,高的空穴迁移率(高达142 cm 2 V -1 s -1)以及低的陷阱(缺陷)密度。这些性质表明,TMC可以有效抑制辐射和非辐射复合损失,从而为最大化钙钛矿型太阳能电池的效率提供了有希望的方法。
更新日期:2020-09-08
down
wechat
bug