当前位置: X-MOL 学术Engineering › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Extreme Energetic Materials at Ultrahigh Pressures
Engineering ( IF 12.8 ) Pub Date : 2020-09-01 , DOI: 10.1016/j.eng.2020.07.010
Ho-Kwang Mao , Cheng Ji , Bing Li , Gang Liu , Eugene Gregoryanz

Abstract Owing to their extremely high energy density, single-bonded polymeric nitrogen and atomic metallic hydrogen are generally regarded as the ultimate energetic materials. Although their syntheses normally require ultrahigh pressures of several hundred gigapascals (GPa), which prohibit direct materials application, research on their stability, metastability, and fundamental properties are valuable for seeking extreme energetic materials through alternative synthetic routes. Various crystalline and amorphous polymeric nitrogens have been discovered between 100 and 200 GPa. Metastability at ambient conditions has been demonstrated for some of these phases. Cubic-gauche and black-phosphorus polymorphs of single-bonded nitrogen are two particularly interesting phases. Their large hystereses warrant further application-inspired basic research of nitrogen. In contrast, although metallic hydrogen contains the highest-estimated energy density, its picosecond lifetime and picogram quantity make its practical material application impossible at present. “Metallic hydrogen” remains a curiosity-driven basic research pursuit focusing on the pressure-induced evolution of the molecular hydrogen crystal and its electronic band structure from a low-density insulator with a very wide electronic band gap to a semiconductor with a narrow gap to a dense molecular metal and atomic metal and eventually to a previously unknown exotic state of matter. This great experimental challenge is driving relentless advancement in ultrahigh-pressure science and technology.

中文翻译:

超高压下的高能材料

摘要 单键聚合氮和原子金属氢由于具有极高的能量密度,被普遍认为是终极含能材料。尽管它们的合成通常需要数百吉帕 (GPa) 的超高压,这禁止直接应用材料,但对其稳定性、亚稳定性和基本性质的研究对于通过替代合成途径寻找极端高能材料是有价值的。已经发现了 100 到 200 GPa 之间的各种结晶和无定形聚合氮。其中一些相在环境条件下的亚稳定性已经得到证实。单键氮的立方形和黑磷多晶型物是两个特别有趣的相。它们的大滞后保证了进一步应用启发的氮基础研究。相比之下,虽然金属氢含有最高估计的能量密度,但其皮秒寿命和皮克数量使其目前无法实际应用材料。“金属氢”仍然是好奇心驱动的基础研究追求,专注于分子氢晶体及其电子能带结构的压力诱导演化,从具有非常宽电子带隙的低密度绝缘体到具有窄带隙的半导体到一种致密的分子金属和原子金属,并最终形成以前未知的奇异物质状态。这一巨大的实验挑战正在推动超高压科学和技术的不断进步。尽管金属氢含有最高估计的能量密度,但其皮秒寿命和皮克数量使其目前无法实际应用。“金属氢”仍然是好奇心驱动的基础研究追求,专注于分子氢晶体及其电子能带结构的压力诱导演化,从具有非常宽电子带隙的低密度绝缘体到具有窄带隙的半导体到一种致密的分子金属和原子金属,并最终形成以前未知的奇异物质状态。这一巨大的实验挑战正在推动超高压科学和技术的不断进步。尽管金属氢含有最高估计的能量密度,但其皮秒寿命和皮克数量使其目前无法实际应用。“金属氢”仍然是好奇心驱动的基础研究追求,专注于分子氢晶体及其电子能带结构的压力诱导演化,从具有非常宽电子带隙的低密度绝缘体到具有窄带隙的半导体到一种致密的分子金属和原子金属,并最终形成以前未知的奇异物质状态。这一巨大的实验挑战正在推动超高压科学和技术的不断进步。“金属氢”仍然是好奇心驱动的基础研究追求,专注于分子氢晶体及其电子能带结构的压力诱导演化,从具有非常宽电子带隙的低密度绝缘体到具有窄带隙的半导体到一种致密的分子金属和原子金属,并最终形成以前未知的奇异物质状态。这一巨大的实验挑战正在推动超高压科学和技术的不断进步。“金属氢”仍然是好奇心驱动的基础研究追求,专注于分子氢晶体及其电子能带结构的压力诱导演化,从具有非常宽电子带隙的低密度绝缘体到具有窄带隙的半导体到一种致密的分子金属和原子金属,并最终形成以前未知的奇异物质状态。这一巨大的实验挑战正在推动超高压科学和技术的不断进步。
更新日期:2020-09-01
down
wechat
bug