当前位置: X-MOL 学术J. Cosmol. Astropart. Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
How Gaussian can the sky be? Primordial non-Gaussianity from quantum information
Journal of Cosmology and Astroparticle Physics ( IF 5.3 ) Pub Date : 2020-07-21 , DOI: 10.1088/1475-7516/2020/07/047
César Gómez 1 , Raul Jimenez 2, 3
Affiliation  

Using the quantum information picture to describe the early universe as a time dependent quantum density matrix, with time playing the role of a stochastic variable, we compute the non-gaussian features in the distribution of primordial fluctuations. We use a quasi de Sitter model to compute the corresponding quantum Fisher information function as the second derivative of the relative entanglement entropy for the density matrix at two different times. We define the curvature fluctuations in terms of the time quantum estimator. Using standard quantum estimation theory we compute the non-gaussian features in the statistical distribution of primordial fluctuations. Our approach is model independent and only relies on the existence of a quasi de Sitter phase. We show that there are primordial non-gaussianities, both in the form of squeezed and equilateral shapes. The squeezed limit gives a value of $f_{\rm NL} \sim n_s-1$. In the equilateral limit we find that $f_{\rm NL} \sim 0.03$. The equilateral non-gaussianity is due to the non-linearity of Einstein's equation. On the other hand, the squeezed one is due to the quantum nature of clock synchronization and thus real and cannot be gauged away as a global curvature. We identify a new effect: {\it clock bias} which is a pure quantum effect and introduces a bias in the spectral tilt and running of the power spectrum of order $\sim 10^{-4}$, which could be potentially measurable and yield precious information on the quantum nature of the early Universe.

中文翻译:

天空可以有多高斯?来自量子信息的原始非高斯性

使用量子信息图将早期宇宙描述为时间相关的量子密度矩阵,时间扮演随机变量的角色,我们计算原始涨落分布中的非高斯特征。我们使用准 de Sitter 模型计算相应的量子 Fisher 信息函数,作为密度矩阵在两个不同时间的相对纠缠熵的二阶导数。我们根据时间量子估计量来定义曲率涨落。我们使用标准量子估计理论计算原始波动统计分布中的非高斯特征。我们的方法与模型无关,仅依赖于准 de Sitter 阶段的存在。我们证明存在原始的非高斯性,以挤压和等边形状的形式。压缩极限给出了 $f_{\rm NL} \sim n_s-1$ 的值。在等边极限中,我们发现 $f_{\rm NL} \sim 0.03$。等边非高斯性是由于爱因斯坦方程的非线性。另一方面,压缩的一个是由于时钟同步的量子性质,因此是真实的,不能作为全局曲率来衡量。我们确定了一种新效应:{\it 时钟偏差},它是一种纯量子效应,并在 $\sim 10^{-4}$ 阶的功率谱的频谱倾斜和运行中引入了偏差,这可能是可测量的并产生关于早期宇宙量子性质的宝贵信息。等边非高斯性是由于爱因斯坦方程的非线性。另一方面,压缩的一个是由于时钟同步的量子性质,因此是真实的,不能作为全局曲率来衡量。我们确定了一种新效应:{\it 时钟偏差},它是一种纯量子效应,并在 $\sim 10^{-4}$ 阶的功率谱的频谱倾斜和运行中引入了偏差,这可能是可测量的并产生关于早期宇宙量子性质的宝贵信息。等边非高斯性是由于爱因斯坦方程的非线性。另一方面,压缩的一个是由于时钟同步的量子性质,因此是真实的,不能作为全局曲率来衡量。我们确定了一种新效应:{\it 时钟偏差},它是一种纯量子效应,并在 $\sim 10^{-4}$ 阶的功率谱的频谱倾斜和运行中引入了偏差,这可能是可测量的并产生关于早期宇宙量子性质的宝贵信息。
更新日期:2020-07-21
down
wechat
bug