当前位置: X-MOL 学术J. reine angew. Math. › 论文详情
The metric geometry of singularity types
Journal für die reine und angewandte Mathematik ( IF 1.486 ) Pub Date : 2020-07-11 , DOI: 10.1515/crelle-2020-0019
Tamás Darvas, Eleonora Di Nezza, Hoang-Chinh Lu

Let X be a compact Kähler manifold. Given a big cohomology class {θ}, there is a natural equivalence relation on the space of θ-psh functions giving rise to 𝒮(X,θ), the space of singularity types of potentials. We introduce a natural pseudo-metric d𝒮 on 𝒮(X,θ) that is non-degenerate on the space of model singularity types and whose atoms are exactly the relative full mass classes. In the presence of positive mass we show that this metric space is complete. As applications, we show that solutions to a family of complex Monge–Ampère equations with varying singularity type converge as governed by the d𝒮-topology, and we obtain a semicontinuity result for multiplier ideal sheaves associated to singularity types, extending the scope of previous results from the local context.

中文翻译:

奇异类型的度量几何

X为紧凑的Kähler流形。给定同调类{θ},在θ-psh函数空间上存在自然等价关系 𝒮Xθ,即奇点类型的空间。我们介绍一个自然的伪度量d𝒮𝒮Xθ在模型奇异类型的空间上是非退化的,并且其原子恰好是相对完整质量类别。在存在正质量的情况下,我们表明该度量空间是完整的。作为应用,我们证明了对于具有不同奇异类型的一组复杂Monge-Ampère方程的解收敛,由d𝒮-拓扑,我们获得了与奇异类型相关的乘子理想滑轮的半连续结果,从而从局部上下文扩展了先前结果的范围。
更新日期:2020-07-11
全部期刊列表>>
T&FG
virulence
欢迎新作者ACS
中国作者高影响力研究精选
虚拟特刊
屿渡论文,编辑服务
浙大
上海中医药大学
深圳大学
上海交通大学
南方科技大学
清华大学
南科大学何凤
徐晶
张大卫
彭孝军
杨朝勇
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
华辉
天合科研
x-mol收录
试剂库存
down
wechat
bug