当前位置: X-MOL 学术NMR Biomed. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Motion correction methods for MRS: experts' consensus recommendations
NMR in Biomedicine ( IF 2.7 ) Pub Date : 2020-07-20 , DOI: 10.1002/nbm.4364
Ovidiu C Andronesi 1 , Pallab K Bhattacharyya 2 , Wolfgang Bogner 3 , In-Young Choi 4 , Aaron T Hess 5 , Phil Lee 6 , Ernesta M Meintjes 7 , M Dylan Tisdall 8 , Maxim Zaitzev 9, 10 , André van der Kouwe 1
Affiliation  

Long acquisition times due to intrinsically low signal‐to‐noise ratio and the need for highly homogeneous B0 field make MRS particularly susceptible to motion or scanner instability compared with MRI. Motion‐induced changes in both localization and shimming (ie B0 homogeneity) degrade MRS data quality. To mitigate the effects of motion three approaches can be employed: (1) subject immobilization, (2) retrospective correction, and (3) prospective real‐time correction using internal and/or external tracking methods. Prospective real‐time correction methods can simultaneously update localization and the B0 field to improve MRS data quality. While localization errors can be corrected with both internal (navigators) and external (optical camera, NMR probes) tracking methods, the B0 field correction requires internal navigator methods to measure the B0 field inside the imaged volume and the possibility to update the scanner shim hardware in real time. Internal and external tracking can rapidly update the MRS localization with submillimeter and subdegree precision, while scanner frequency and first‐order shims of scanner hardware can be updated by internal methods every sequence repetition. These approaches are most well developed for neuroimaging, for which rigid transformation is primarily applicable. Real‐time correction greatly improves the stability of MRS acquisition and quantification, as shown in clinical studies on subjects prone to motion, including children and patients with movement disorders, enabling robust measurement of metabolite signals including those with low concentrations, such as gamma‐aminobutyric acid and glutathione. Thus, motion correction is recommended for MRS users and calls for tighter integration and wider availability of such methods by MR scanner manufacturers.

中文翻译:

MRS的运动校正方法:专家共识建议

由于固有的低信噪比和对高度均匀的B 0场的需要,长采集时间使得 MRS 与 MRI 相比特别容易受到运动或扫描仪不稳定的影响。运动引起的定位和匀场变化(即B 0同质性)会降低 MRS 数据质量。为了减轻运动的影响,可以采用三种方法:(1)受试者固定,(2)回顾性校正,以及(3)使用内部和/或外部跟踪方法进行前瞻性实时校正。前瞻性实时校正方法可以同时更新定位和B 0场以提高 MRS 数据质量。虽然可以使用内部(导航器)和外部(光学相机、NMR 探头)跟踪方法来校正定位误差,但B 0场校正需要内部导航器方法来测量B 0成像体积内的场以及实时更新扫描仪垫片硬件的可能性。内部和外部跟踪可以以亚毫米和亚度精度快速更新MRS定位,而扫描仪频率和扫描仪硬件的一阶垫片可以通过内部方法在每次序列重复时更新。这些方法最适用于神经成像,刚性变换主要适用于神经成像。实时校正极大地提高了 MRS 采集和量化的稳定性,如对容易运动的受试者(包括儿童和运动障碍患者)的临床研究所示,能够可靠地测量代谢物信号,包括低浓度的代谢物信号,例如 γ-氨基丁酸酸和谷胱甘肽。因此,
更新日期:2020-07-20
down
wechat
bug