当前位置: X-MOL 学术J. Cell. Physiol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Harnessing the targeting potential of differential radiobiological effects of photon versus particle radiation for cancer treatment.
Journal of Cellular Physiology ( IF 5.6 ) Pub Date : 2020-07-20 , DOI: 10.1002/jcp.29960
Jinhua Zhang 1, 2, 3 , Jing Si 1, 2, 3 , Lu Gan 1, 2, 3 , Rong Zhou 4 , Menghuan Guo 5 , Hong Zhang 1, 2, 3
Affiliation  

Radiotherapy is one of the major modalities for malignancy treatment. High linear energy transfer (LET) charged‐particle beams, like proton and carbon ions, exhibit favourable depth‐dose distributions and radiobiological enhancement over conventional low‐LET photon irradiation, thereby marking a new era in high precision medicine. Tumour cells have developed multicomponent signal transduction networks known as DNA damage responses (DDRs), which initiate cell‐cycle checkpoints and induce double‐strand break (DSB) repairs in the nucleus by nonhomologous end joining or homologous recombination pathways, to manage ionising radiation (IR)‐induced DNA lesions. DNA damage induction and DSB repair pathways are reportedly dependent on the quality of radiation delivered. In this review, we summarise various types of DNA lesion and DSB repair mechanisms, upon irradiation with low and high‐LET radiation, respectively. We also analyse factors influencing DNA repair efficiency. Inhibition of DNA damage repair pathways and dysfunctional cell‐cycle checkpoint sensitises tumour cells to IR. Radio‐sensitising agents, including DNA–PK inhibitors, Rad51 inhibitors, PARP inhibitors, ATM/ATR inhibitors, chk1 inhibitors, wee1 kinase inhibitors, Hsp90 inhibitors, and PI3K/AKT/mTOR inhibitors have been found to enhance cell killing by IR through interference with DDRs, cell‐cycle arrest, or other cellular processes. The cotreatment of these inhibitors with IR may represent a promising therapeutic strategy for cancer.

中文翻译:

利用光子与粒子辐射的不同放射生物学效应的靶向潜力进行癌症治疗。

放射治疗是恶性肿瘤治疗的主要方式之一。高线性能量转移 (LET) 带电粒子束,如质子和碳离子,与传统的低 LET 光子照射相比,表现出有利的深度剂量分布和放射生物学增强,从而标志着高精度医学的新时代。肿瘤细胞已经发展出称为 DNA 损伤反应 (DDR) 的多组分信号转导网络,它启动细胞周期检查点并通过非同源末端连接或同源重组途径在细胞核中诱导双链断裂 (DSB) 修复,以控制电离辐射。 IR)诱导的 DNA 损伤。据报道,DNA 损伤诱导和 DSB 修复途径取决于所提供的辐射质量。在这篇综述中,我们总结了各种类型的 DNA 损伤和 DSB 修复机制,分别用低和高 LET 辐射照射。我们还分析了影响 DNA 修复效率的因素。抑制 DNA 损伤修复途径和功能失调的细胞周期检查点使肿瘤细胞对 IR 敏感。已发现放射增敏剂,包括 DNA-PK 抑制剂、Rad51 抑制剂、PARP 抑制剂、ATM/ATR 抑制剂、chk1 抑制剂、wee1 激酶抑制剂、Hsp90 抑制剂和 PI3K/AKT/mTOR 抑制剂可通过干扰增强 IR 对细胞的杀伤DDR、细胞周期停滞或其他细胞过程。这些抑制剂与 IR 的共同治疗可能代表了一种有前途的癌症治疗策略。抑制 DNA 损伤修复途径和功能失调的细胞周期检查点使肿瘤细胞对 IR 敏感。已发现放射增敏剂,包括 DNA-PK 抑制剂、Rad51 抑制剂、PARP 抑制剂、ATM/ATR 抑制剂、chk1 抑制剂、wee1 激酶抑制剂、Hsp90 抑制剂和 PI3K/AKT/mTOR 抑制剂可通过干扰增强 IR 对细胞的杀伤DDR、细胞周期停滞或其他细胞过程。这些抑制剂与 IR 的共同治疗可能代表了一种有前途的癌症治疗策略。抑制 DNA 损伤修复途径和功能失调的细胞周期检查点使肿瘤细胞对 IR 敏感。已发现放射增敏剂,包括 DNA-PK 抑制剂、Rad51 抑制剂、PARP 抑制剂、ATM/ATR 抑制剂、chk1 抑制剂、wee1 激酶抑制剂、Hsp90 抑制剂和 PI3K/AKT/mTOR 抑制剂可通过干扰增强 IR 对细胞的杀伤DDR、细胞周期停滞或其他细胞过程。这些抑制剂与 IR 的共同治疗可能代表了一种有前途的癌症治疗策略。细胞周期停滞或其他细胞过程。这些抑制剂与 IR 的共同治疗可能代表了一种有前途的癌症治疗策略。细胞周期停滞或其他细胞过程。这些抑制剂与 IR 的共同治疗可能代表了一种有前途的癌症治疗策略。
更新日期:2020-07-20
down
wechat
bug