当前位置: X-MOL 学术Desalination › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Bacterial-cellulose-derived carbonaceous electrode materials for water desalination via capacitive method: The crucial role of defect sites
Desalination ( IF 8.3 ) Pub Date : 2020-10-01 , DOI: 10.1016/j.desal.2020.114596
Yolanda Belaustegui , Fabiola Pantò , Leire Urbina , Maria Angeles Corcuera , Arantxa Eceiza , Alessandra Palella , Claudia Triolo , Saveria Santangelo

Abstract Electrosorptive desalination is a very simple and appealing approach to satisfy the increasing demand for drinking water. The large-scale application of this technology calls for the development of easy-to-produce, cheap and highly performing electrode materials and for the identification and tailoring of their most influential properties, as well. Here, biosynthesised bacterial cellulose is used as a carbon precursor for the production of three-dimensional nanostructures endowed with hierarchically porous architecture and different density and type of intrinsic and hetero-atom induced lattice defects. The produced materials exhibit unprecedented desalination capacities for carbon-based electrodes. At an initial concentration of 585 mg L−1 (10 mmol L−1), they are able to remove from 55 to 79 mg g−1 of salt; as the initial concentration rises to 11.7 g L−1 (200 mmol L−1), their salt adsorption capacity reaches values ranging between 1.03 and 1.35 g g−1. The results of the thorough material characterisation by complementary techniques evidence that the relative amount of oxygenated surface functional species enhancing the electrode wettability play a crucial role at lower NaCl concentrations, whereas the availability of active non-sp2 defect sites for adsorption is mainly influential at higher salt concentrations.

中文翻译:

细菌纤维素衍生的碳质电极材料用于电容法海水淡化:缺陷位点的关键作用

摘要 电吸附脱盐是满足日益增长的饮用水需求的一种非常简单且有吸引力的方法。这项技术的大规模应用需要开发易于生产、廉价且高性能的电极材料,并需要对其最具影响力的特性进行识别和定制。在这里,生物合成的细菌纤维素用作碳前体,用于生产具有分层多孔结构和不同密度和类型的内在和杂原子诱导的晶格缺陷的三维纳米结构。所生产的材料对碳基电极表现出前所未有的脱盐能力。在 585 mg L-1 (10 mmol L-1) 的初始浓度下,它们能够去除 55 至 79 mg g-1 的盐;随着初始浓度上升到 11.7 g L-1 (200 mmol L-1),它们的盐吸附容量达到 1.03 到 1.35 g g-1 之间的值。通过互补技术对材料进行彻底表征的结果表明,增强电极润湿性的氧化表面功能物质的相对数量在较低的 NaCl 浓度下起着至关重要的作用,而活性非 sp2 缺陷位点的吸附可用性主要在较高的浓度下有影响。盐浓度。
更新日期:2020-10-01
down
wechat
bug