当前位置: X-MOL 学术Int. J. Crashworth. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Relevance analysis of AEB control strategy and occupant kinematics based on typical cut-in scenario
International Journal of Crashworthiness ( IF 1.9 ) Pub Date : 2020-07-20 , DOI: 10.1080/13588265.2020.1785099
Chengyue Jiang 1, 2 , Xiangzhi Meng 2 , Lihai Ren 2 , Xi Liu 2 , Chen Li 2
Affiliation  

Abstract

The objective of this study was to explore the relevance between Autonomous Emergency Braking (AEB) control strategy and occupant pre-impact kinematics among a typical real-world cut-in impact scenario. First, the accident scenario was built with PreScan software after accident analysis. Second, a MADYMO simulation model with Active Human Model (AHM) was built and validated with the volunteer test carried out by our team. Finally, the AEB module and related control strategies were introduced into the main vehicle, and the effects of different strategies on the occupant kinematic were evaluated. The simulation results indicated that it was efficient to evaluate the occupant kinematics during pre-impact phase through vehicle and occupant integrated simulation method. The main vehicle’s velocity could be reduced between 5 km/h and 14 km/h respectively after introducing different AEB control strategies, which was less than the one manoeuvred by driver (22 km/h). Earlier activation of the AEB and heavier braking could result in larger up-body displacement, but less final impact velocity, and the maximum head displacement reached 172.56 mm due to the AEB control. Comparing partial braking with detection angle 9° case with 100% braking with detection angle 18° case, the head, thorax and shoulder displacements were increased by 94.8%, 104.1%, and 48.7%. This research is beneficial for the subsequent integrated safety analysis.



中文翻译:

基于典型切入场景的AEB控制策略与乘员运动学相关性分析

摘要

本研究的目的是探讨自动紧急制动 (AEB) 控制策略与典型现实世界切入碰撞情景中乘员碰撞前运动学之间的相关性。首先,事故场景是在事故分析后使用 PreScan 软件构建的。其次,通过我们团队进行的志愿者测试,构建并验证了带有主动人体模型 (AHM) 的 MADYMO 仿真模型。最后,将AEB模块及相关控制策略引入主车,评估不同策略对乘员运动学的影响。仿真结果表明,通过车辆和乘员集成仿真方法,在碰撞前阶段评估乘员运动学是有效的。引入不同的AEB控制策略后,主车的速度分别降低了5-14公里/小时,低于驾驶员操纵的22公里/小时。较早启动 AEB 和较重的制动可能会导致较大的上身位移,但最终冲击速度较小,并且由于 AEB 控制,最大头部位移达到了 172.56 毫米。检测角度为9°的部分制动与检测角度为18°的100%制动比较,头部、胸部和肩部位移分别增加了94.8%、104.1%和48.7%。本研究有利于后续的综合安全性分析。较早启动 AEB 和较重的制动可能会导致较大的上身位移,但最终冲击速度较小,并且由于 AEB 控制,最大头部位移达到了 172.56 毫米。检测角度为9°的部分制动与检测角度为18°的100%制动比较,头部、胸部和肩部位移分别增加了94.8%、104.1%和48.7%。本研究有利于后续的综合安全性分析。较早启动 AEB 和较重的制动可能会导致较大的上身位移,但最终冲击速度较小,并且由于 AEB 控制,最大头部位移达到了 172.56 毫米。检测角度为9°的部分制动与检测角度为18°的100%制动比较,头部、胸部和肩部位移分别增加了94.8%、104.1%和48.7%。本研究有利于后续的综合安全性分析。

更新日期:2020-07-20
down
wechat
bug