当前位置: X-MOL 学术Int. J. Green Energy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Numerical simulation of DPF thermal regeneration process based on an improved dynamic model
International Journal of Green Energy ( IF 3.1 ) Pub Date : 2020-07-20 , DOI: 10.1080/15435075.2020.1791876
Bingxia Liu 1, 2, 3 , Ping Sun 1 , Suresh Aggarwal 3 , Shaojun Liu 2 , Junheng Liu 1
Affiliation  

In this paper, an improved kinetics model of soot oxidation based on the traditional B-K model is employed to characterize the thermal regeneration process of diesel particulate filters (DPF). Considering the influence of specific surface area and inhibition factor on soot oxidation, the regeneration process is simulated and analyzed using the commercial FLUENT software combined with UDF method. The results show that soot particles react from the middle of the filter to both ends, and the temporal profile of soot mass in the thermal regeneration process could be divided into three sections: smooth reaction, rapid reaction, and late reaction. The regeneration time decreases with the increasing of the incoming oxygen volume fraction. When the thickness of the deposited soot layer is less than 0.1 mm, the regeneration time is prolonged as the thickness of the deposited layer decreases. When the thickness is more than 0.1 mm, the regeneration time shows the opposite trend with the thickness of the deposited layer. Meanwhile, the curve of maximum wall temperature changing with time is divided into heating, rapid-burning, and slow-burning regimes. The maximum wall temperature increases as the volume fraction of oxygen flow increases, and as the deposited layer thickness increases.



中文翻译:

基于改进动力学模型的DPF热再生过程数值模拟

在本文中,基于传统的BK模型的改进的烟尘氧化动力学模型被用来表征柴油机微粒过滤器(DPF)的热再生过程。考虑到比表面积和抑制因子对烟灰氧化的影响,利用商用FLUENT软件结合UDF方法对再生过程进行了模拟和分析。结果表明,烟尘颗粒从过滤器的中部到两端发生反应,热再生过程中烟尘质量的时间分布可分为平滑反应,快速反应和后期反应三个部分。再生时间随着进入的氧气体积分数的增加而减少。当沉积的烟灰层的厚度小于0.1mm时,随着沉积层厚度的减小,再生时间延长。当厚度大于0.1mm时,再生时间与沉积层的厚度显示相反的趋势。同时,最大壁温随时间变化的曲线分为加热,快速燃烧和缓慢燃烧两种状态。最大壁温随氧气流量的体积分数增加以及沉积层厚度的增加而增加。

更新日期:2020-08-26
down
wechat
bug