当前位置: X-MOL 学术Int. J. Multiscale Comput. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Large scale computations of effective elastic properties of rubber with carbon black fillers
International Journal for Multiscale Computational Engineering ( IF 1.4 ) Pub Date : 2020-07-01 , DOI: 10.1615/intjmultcompeng.2012002051
Aurelie Jean

A general method, based on a multi-scale approach, is proposed to derive the effective elastic shear modulus of a rubber with 14\% of carbon black fillers from finite element (FE) and fast Fourier transform (FFT) methods. The complex multi-scale microstructure of such material was generated numerically from a mathematical model of its morphology which was identified from statistical moments out of TEM images. For FE computations, the simulated microstructures were meshed from three-dimensional reconstruction of isosurface using Marching Cubes algorithm with a special attention to the quality of the topology and the geometry of the mesh. To compute the shear modulus and to determine the representative volume element, homogeneous boundary conditions were prescribed on meshes and combined with a domain decomposition method. Regarding parallel computing, specific difficulties related to the highly heterogeneous microstructures and complex geometry are pointed out. Hereby, the experimental shear modulus (1.8MPa) obtained from DMA (dynamic mechanical analysis) was estimated by the Hashin-Shtrikman lower bound (1.4MPa) and the computations on simulated microstructures (2.4MPa). The shear modulus was determined for two materials with the same volume fraction but different distribution of fillers. The current model of microstructures is capable of estimating the relative effect of the mixing time in processing associated with change in morphology on the elastic behavior. The computations also provide the local fields of stress/strain in the elastomeric matrix.

中文翻译:

含炭黑填料的橡胶的有效弹性的大规模计算

提出了一种基于多尺度方法的通用方法,该方法通过有限元(FE)和快速傅里叶变换(FFT)方法得出含14%碳黑填料的橡胶的有效弹性剪切模量。这种材料的复杂的多尺度微观结构是从其形态的数学模型中数字生成的,该数学模型是根据TEM图像中的统计矩确定的。对于有限元计算,使用Marching Cubes算法通过等值面的三维重建对模拟的微观结构进行网格划分,尤其要注意拓扑的质量和网格的几何形状。为了计算剪切模量并确定代表性的体积单元,在网格上指定了均匀的边界条件,并结合了区域分解方法。关于并行计算,指出了与高度异质的微观结构和复杂的几何形状有关的特定困难。因此,通过Hashin-Shtrikman下界(1.4MPa)和模拟微观结构的计算(2.4MPa)估算了从DMA(动态力学分析)获得的实验剪切模量(1.8MPa)。确定了两种具有相同体积分数但填料分布不同的材料的剪切模量。当前的微结构模型能够估计混合时间在与形态变化相关的加工过程中对弹性行为的相对影响。该计算还提供了弹性体基质中的局部应力/应变场。因此,通过Hashin-Shtrikman下界(1.4MPa)和模拟微观结构的计算(2.4MPa)估算了从DMA(动态力学分析)获得的实验剪切模量(1.8MPa)。确定了两种具有相同体积分数但填料分布不同的材料的剪切模量。当前的微结构模型能够估计混合时间在与形态变化相关的加工过程中对弹性行为的相对影响。该计算还提供了弹性体基质中的局部应力/应变场。因此,通过Hashin-Shtrikman下界(1.4MPa)和模拟微观结构的计算(2.4MPa)估算了从DMA(动态力学分析)获得的实验剪切模量(1.8MPa)。确定了两种具有相同体积分数但填料分布不同的材料的剪切模量。当前的微结构模型能够估计混合时间在与形态变化相关的加工过程中对弹性行为的相对影响。该计算还提供了弹性体基质中的局部应力/应变场。确定了两种具有相同体积分数但填料分布不同的材料的剪切模量。当前的微结构模型能够估计混合时间在与形态变化相关的加工过程中对弹性行为的相对影响。该计算还提供了弹性体基质中的局部应力/应变场。确定了两种具有相同体积分数但填料分布不同的材料的剪切模量。当前的微结构模型能够估计混合时间在与形态变化相关的加工过程中对弹性行为的相对影响。该计算还提供了弹性体基质中的局部应力/应变场。
更新日期:2020-07-20
down
wechat
bug