当前位置: X-MOL 学术Rapid Prototyping J. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Numerical modeling of thermal anisotropy on a selective laser melting process
Rapid Prototyping Journal ( IF 3.4 ) Pub Date : 2020-07-13 , DOI: 10.1108/rpj-02-2020-0032
Juan Daniel Trejos , Luis Arturo Reyes , Carlos Garza , Patricia Zambrano , Omar Lopez-Botello

Purpose

An experimental and numerical study of thermal profiles of 316 L stainless steel during selective laser melting (SLM) was developed. This study aims to present a novel approach to determine the significance and contribution of thermal numerical modeling enhancement factors of SLM.

Design/methodology/approach

Surface and volumetric heat models were proposed to compare the laser interaction with the powder bed and substrate, considering the powder size, absorptance and propagation of the laser energy through the effective depth of the metal layer. The approach consists in evaluating the contribution of the thermal conductivity anisotropic enhancement factors to establish the factors that minimized the error of the predicted results vs the experimental data.

Findings

The level of confidence of the carried-out analysis is of 97.8% for the width of the melt pool and of 99.8% for the depth of the melt pool. The enhancement factors of the y and z spatial coordinates influence the most in the predicted melt pool geometry.

Research limitations/implications

Nevertheless, the methodology presented in this study is not limited to 316 L stainless steel and can be applied to any metallic material used for SLM processes.

Practical implications

This study is focused on 316 L stainless steel, which is commonly used in SLM and is considered a durable material for high-temperature, high-corrosion and high-stress situations.

Social implications

The additive manufacturing (AM) technology is a relatively new technology becoming global. The AM technology may have health benefits when compared to the conventional industrial processes, as the workers avoid extended periods of exposure present in conventional manufacturing.

Originality/value

This study presents a novel approach to determine the significance and contribution of thermal numerical modeling enhancement factors of SLM. It was found that the volumetric heat model and anisotropic enhancement thermal approaches used in the present research, had a good agreement with experimental results.



中文翻译:

选择性激光熔化过程中热各向异性的数值模拟

目的

实验和数值研究了316 L不锈钢在选择性激光熔化(SLM)期间的温度分布。这项研究旨在提出一种新颖的方法来确定SLM热数值建模增强因子的重要性和贡献。

设计/方法/方法

提出了表面和体积热模型,以比较激光与粉末床和基材的相互作用,其中考虑了粉末尺寸,吸收率以及激光能量在金属层有效深度范围内的传播。该方法包括评估热导率各向异性增强因子的贡献,以建立将预测结果与实验数据的误差最小化的因子。

发现

进行的分析的置信度对于熔池的宽度为97.8%,对于熔池的深度为99.8%。y和z空间坐标的增强因子在预测的熔池几何形状中影响最大。

研究局限/意义

尽管如此,本研究中介绍的方法并不限于316 L不锈钢,而是可以应用于SLM工艺中使用的任何金属材料。

实际影响

这项研究的重点是SLM中常用的316 L不锈钢,被认为是耐高温,高腐蚀和高应力情况的耐用材料。

社会影响

增材制造(AM)技术是一种相对较新的技术,正在走向全球。与传统的工业流程相比,AM技术可能具有健康益处,因为工人避免了传统制造中存在的长时间暴露。

创意/价值

这项研究提出了一种确定SLM热数值建模增强因子的意义和贡献的新颖方法。发现本研究中使用的体积热模型和各向异性增强热方法与实验结果具有很好的一致性。

更新日期:2020-07-13
down
wechat
bug