当前位置: X-MOL 学术Rapid Prototyping J. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Build accuracy and compression properties of additively manufactured 304L honeycombs
Rapid Prototyping Journal ( IF 3.4 ) Pub Date : 2020-04-03 , DOI: 10.1108/rpj-08-2018-0201
Myranda Spratt , Sudharshan Anandan , Rafid Hussein , Joseph W. Newkirk , K. Chandrashekhara , Misak Heath , Michael Walker

The purpose of this study is to analyze the build quality and compression properties of thin-walled 304L honeycomb structures manufactured by selective laser melting. Four honeycomb wall thicknesses, from 0.2 to 0.5 mm, were built and analyzed.,The density of the honeycombs was changed by increasing the wall thickness of each sample. The honeycombs were tested under compression. Differences between the computer-assisted design model and the as-built structure were quantified by measuring physical dimensions. The microstructure was evaluated by optical microscopy, density measurements and microhardness.,The Vickers hardness of the honeycomb structures was 209 ± 14 at 50 g load. The compression ultimate and yield strength of the honeycomb material were shown to increase as the wall thickness of the honeycomb samples increased. The specific ultimate strength also increased with wall thickness, while the specific yield stress of the honeycomb remained stable at 42 ± 2.7 MPa/g/cm3. The specific ultimate strength minimized near 0.45 mm wall thickness at 82 ± 5 MPa/g/cm3 and increased to 134 ± 3 MPa/g/cm3 at 0.6 mm wall thickness.,This study highlights a single lightweight metal structure, the honeycomb, built by additive manufacturing (AM). The honeycomb is an interesting structure because it is a well-known building material in the lightweight structural composites field but is still considered a relatively complex geometric shape to fabricate. As shown here, AM techniques can be used to make complex geometric shapes with strong materials to increase the design flexibility of the lightweight structural component industry.

中文翻译:

增材制造的 304L 蜂窝的构建精度和压缩性能

本研究的目的是分析通过选择性激光熔化制造的 304L 薄壁蜂窝结构的构建质量和压缩性能。构建并分析了四个蜂窝壁厚,从 0.2 到 0.5 mm。通过增加每个样品的壁厚来改变蜂窝的密度。在压缩下测试蜂窝。通过测量物理尺寸来量化计算机辅助设计模型和竣工结构之间的差异。通过光学显微镜、密度测量和显微硬度评估微观结构。蜂窝结构的维氏硬度在 50 g 载荷下为 209 ± 14。蜂窝材料的压缩极限和屈服强度随着蜂窝样品壁厚的增加而增加。比极限强度也随着壁厚而增加,而蜂窝的比屈服应力保持稳定在 42±2.7 MPa/g/cm3。比极限强度在 82 ± 5 MPa/g/cm3 的壁厚附近最小化,在 0.6 mm 壁厚时增加到 134 ± 3 MPa/g/cm3。本研究强调了单个轻质金属结构,蜂窝,构建通过增材制造 (AM)。蜂窝是一种有趣的结构,因为它是轻质结构复合材料领域的知名建筑材料,但仍被认为是一种相对复杂的几何形状来制造。如图所示,增材制造技术可用于用坚固的材料制作复杂的几何形状,以提高轻质结构部件行业的设计灵活性。而蜂窝的比屈服应力稳定在 42 ± 2.7 MPa/g/cm3。比极限强度在 82 ± 5 MPa/g/cm3 的壁厚附近最小化,在 0.6 mm 壁厚时增加到 134 ± 3 MPa/g/cm3。本研究强调了单个轻质金属结构,蜂窝,构建通过增材制造 (AM)。蜂窝是一种有趣的结构,因为它是轻质结构复合材料领域的知名建筑材料,但仍被认为是一种相对复杂的几何形状来制造。如图所示,增材制造技术可用于用坚固的材料制作复杂的几何形状,以提高轻质结构部件行业的设计灵活性。而蜂窝的比屈服应力稳定在 42 ± 2.7 MPa/g/cm3。比极限强度在 82 ± 5 MPa/g/cm3 的壁厚附近最小化,在 0.6 mm 壁厚时增加到 134 ± 3 MPa/g/cm3。本研究强调了单个轻质金属结构,蜂窝,构建通过增材制造 (AM)。蜂窝是一种有趣的结构,因为它是轻质结构复合材料领域的知名建筑材料,但仍被认为是一种相对复杂的几何形状来制造。如图所示,增材制造技术可用于用坚固的材料制作复杂的几何形状,以提高轻质结构部件行业的设计灵活性。比极限强度在 82 ± 5 MPa/g/cm3 的壁厚附近最小化,在 0.6 mm 壁厚时增加到 134 ± 3 MPa/g/cm3。本研究强调了单个轻质金属结构,蜂窝,构建通过增材制造 (AM)。蜂窝是一种有趣的结构,因为它是轻质结构复合材料领域的知名建筑材料,但仍被认为是一种相对复杂的几何形状来制造。如图所示,增材制造技术可用于用坚固的材料制作复杂的几何形状,以提高轻质结构部件行业的设计灵活性。比极限强度在 82 ± 5 MPa/g/cm3 的壁厚附近最小化,在 0.6 mm 壁厚时增加到 134 ± 3 MPa/g/cm3。本研究强调了单个轻质金属结构,蜂窝,构建通过增材制造 (AM)。蜂窝是一种有趣的结构,因为它是轻质结构复合材料领域的知名建筑材料,但仍被认为是一种相对复杂的几何形状来制造。如图所示,增材制造技术可用于用坚固的材料制作复杂的几何形状,以提高轻质结构部件行业的设计灵活性。由增材制造 (AM) 制造。蜂窝是一种有趣的结构,因为它是轻质结构复合材料领域的知名建筑材料,但仍被认为是一种相对复杂的几何形状来制造。如图所示,增材制造技术可用于用坚固的材料制作复杂的几何形状,以提高轻质结构部件行业的设计灵活性。由增材制造 (AM) 制造。蜂窝是一种有趣的结构,因为它是轻质结构复合材料领域的知名建筑材料,但仍被认为是一种相对复杂的几何形状来制造。如图所示,增材制造技术可用于用坚固的材料制作复杂的几何形状,以提高轻质结构部件行业的设计灵活性。
更新日期:2020-04-03
down
wechat
bug