当前位置: X-MOL 学术Limnol. Oceanogr. Methods › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Using machine learning to correct for nonphotochemical quenching in high‐frequency, in vivo fluorometer data
Limnology and Oceanography: Methods ( IF 2.1 ) Pub Date : 2020-07-18 , DOI: 10.1002/lom3.10378
Mark A. Lucius 1 , Kenneth E. Johnston 1 , Lawrence W. Eichler 1 , Jeremy L. Farrell 1, 2 , Vincent W. Moriarty 3 , Rick A. Relyea 1, 2
Affiliation  

In vivo fluorometers use chlorophyll a fluorescence (Fchl) as a proxy to monitor phytoplankton biomass. However, the fluorescence yield of Fchl is affected by photoprotection processes triggered by increased irradiance (nonphotochemical quenching; NPQ), creating diurnal reductions in Fchl that may be mistaken for phytoplankton biomass reductions. Published correction methods are mostly designed for pelagic oceans and are ill suited for inland waters or for high‐frequency data collection. A machine learning‐based method was developed to correct vertical profiler data from an oligotrophic lake. NPQ was estimated as a percent reduction in Fchl by comparing daytime values to mean, unquenched values from the previous night. A random forest regression was trained on sensor data collected coincident with Fchl; including solar radiation, water temperature, depth, and dissolved oxygen saturation. The accuracy of the model was assessed using a grouped 10‐fold cross validation (mean absolute error [MAE]: 7.6%; root mean square error [RMSE]: 10.2%), which was then used to correct Fchl profiles. The model also predicted NPQ and corrected unseen Fchl profiles from a future period with excellent results (MAE: 9.0%; RMSE: 14.4%). Fchl profiles were then correlated to laboratory results, allowing corrected profiles to be compared directly to collected samples. The correction reduced error (RMSE) due to NPQ from 0.67 μg L−1 to 0.33 μg L−1 when compared to uncorrected Fchl data. These results suggest that the use of machine learning models may be an effective way to correct for NPQ and may have universal applicability.

中文翻译:

使用机器学习校正高频体内荧光计数据中的非光化学猝灭

体内荧光计使用叶绿素a荧光(F chl)作为代理来监测浮游植物的生物量。但是,F chl的荧光产量受辐照度增加(非光化学猝灭; NPQ)触发的光保护过程的影响,导致F chl的昼夜减少,这可能被误认为是浮游植物生物量的减少。已发布的校正方法主要是为远洋设计的,不适用于内陆水域或高频数据收集。开发了一种基于机器学习的方法来校正贫营养湖的垂直剖面数据。NPQ估计为F chl减少的百分比通过将白天的值与前一天晚上的平均值进行比较,得出结果。在与F chl一致的传感器数据上进行了森林随机回归训练; 包括太阳辐射,水温,深度和溶解氧饱和度。使用分组的10倍交叉验证(平均绝对误差[MAE]:7.6%;均方根误差[RMSE]:10.2%)评估模型的准确性,然后将其用于校正F chl轮廓。该模型还预测了NPQ,并在以后的一段时间内纠正了看不见的F chl谱图,结果非常出色(MAE:9.0%; RMSE:14.4%)。˚F CHL然后将轮廓与实验室结果相关联,从而可以将校正后的轮廓直接与收集的样品进行比较。从0.67由于NPQ校正减小误差(RMSE)  μ克L- -1〜0.33  μ克L- -1时相比未校正˚F叶绿素数据。这些结果表明,机器学习模型的使用可能是纠正NPQ的有效方法,并且可能具有普遍适用性。
更新日期:2020-09-18
down
wechat
bug