当前位置: X-MOL 学术P-Adic Num. Ultrametr. Anal. Appl. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
$$p$$-Adic Dynamical Systems of $$(3,1)$$-Rational Functions with Unique Fixed Point
p-Adic Numbers, Ultrametric Analysis and Applications ( IF 0.5 ) Pub Date : 2020-07-01 , DOI: 10.1134/s2070046620030048
A. R. Luna , U. A. Rozikov , I. A. Sattarov

We describe the set of all $(3,1)$-rational functions given on the set of complex $p$-adic field $\mathbb C_p$ and having a unique fixed point. We study $p$-adic dynamical systems generated by such $(3,1)$-rational functions and show that the fixed point is indifferent and therefore the convergence of the trajectories is not the typical case for the dynamical systems. We obtain Siegel disks of these dynamical systems. Moreover an upper bound for the set of limit points of each trajectory is given. For each $(3,1)$-rational function on $\mathbb C_p$ there is a point $\hat x=\hat x(f)\in \mathbb C_p$ which is zero in its denominator. We give explicit formulas of radii of spheres (with the center at the fixed point) containing some points that the trajectories (under actions of $f$) of the points after a finite step come to $\hat x$. For a class of $(3,1)$-rational functions defined on the set of $p$-adic numbers $\mathbb Q_p$ we study ergodicity properties of the corresponding dynamical systems. We show that if $p\geq 3$ then the $p$-adic dynamical system reduced on each invariant sphere is not ergodic with respect to Haar measure. For $p=2$, under some conditions we prove non ergodicity and show that there exists a sphere on which the dynamical system is ergodic. Finally, we give a characterization of periodic orbits and some uniformly local properties of the $(3.1)-$rational functions.

中文翻译:

$$p$$-具有唯一不动点的$$(3,1)$$-有理函数的Adic动力系统

我们描述了在复杂的 $p$-adic 域 $\mathbb C_p$ 集合上给出的所有 $(3,1)$-有理函数的集合,并且具有唯一的不动点。我们研究了由这样的 $(3,1)$-有理函数生成的 $p$-adic 动力系统,并表明不动点是无关紧要的,因此轨迹的收敛不是动力系统的典型情况。我们获得了这些动力系统的 Siegel 盘。此外,给出了每个轨迹的极限点集的上限。对于 $\mathbb C_p$ 上的每个 $(3,1)$-有理函数,都有一个点 $\h​​at x=\hat x(f)\in \mathbb C_p$ 的分母为零。我们给出了球体半径的明确公式(中心在不动点),其中包含一些点,这些点在有限步之后的轨迹(在 $f$ 的作用下)到达 $\hat x$。对于定义在 $p$-adic 数集 $\mathbb Q_p$ 上的一类 $(3,1)$-有理函数,我们研究了相应动力系统的遍历特性。我们表明,如果 $p\geq 3$ 那么在每个不变球上减少的 $p$-adic 动力系统就哈尔测度而言不是遍历的。对于$p=2$,在某些条件下,我们证明了非遍历性,并表明存在一个动力系统是遍历的球体。最后,我们给出了周期性轨道的表征和$(3.1)-$有理函数的一些均匀局部性质。对于$p=2$,在某些条件下,我们证明了非遍历性,并表明存在一个动力系统是遍历的球体。最后,我们给出了周期性轨道的表征和$(3.1)-$有理函数的一些均匀局部性质。对于$p=2$,在某些条件下,我们证明了非遍历性,并表明存在一个动力系统是遍历的球体。最后,我们给出了周期性轨道的表征和$(3.1)-$有理函数的一些均匀局部性质。
更新日期:2020-07-01
down
wechat
bug