当前位置: X-MOL 学术Russ. J. Appl. Chem. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Carbon Dioxide Reforming of Methane
Russian Journal of Applied Chemistry ( IF 0.6 ) Pub Date : 2020-07-17 , DOI: 10.1134/s1070427220060014
V. V. Nedolivko , G. O. Zasypalov , A. V. Vutolkina , P. A. Gushchin , V. A. Vinokurov , L. A. Kulikov , S. V. Egazar’yants , E. A. Karakhanov , A. L. Maksimov , A. P. Glotov

Abstract

Thermodynamic and kinetic aspects of the carbon dioxide reforming of methane are considered. Data on the types of catalytic systems used and on specific features of the commercial implementation of the process are systematized. The optimum temperature and pressure ranges for the carbon dioxide reforming of methane are 700–900°C and 2–4 MPa, respectively. Detailed analysis of the published data on the activity and stability of dry reforming catalysts shows that the key factor influencing the activity of the catalysts and their resistance to coking is the balance between the properties of the support and composition of the active metal phase. For example, the acid–base properties of the support determine the strength of binding of the metal with the surface, which can influence both the catalyst activity and its stability by preventing sintering of the active component particles. The most widely supports are silicon and aluminum oxides and zirconium and titanium silicates. Their acidity is controlled by introducing doping additives such as cerium, calcium, and magnesium oxides. Both base transition (Ni and Co) and noble (Rh, Ru, Pd, Pt, and Ir) metals as well as bimetallic systems containing sites of both types can serve as an active phase. The main problem restricting the practical use and scaling of the carbon dioxide reforming of methane is catalyst deactivation due to support coking and sintering of the active component particles.


中文翻译:

甲烷二氧化碳重整

摘要

考虑了甲烷的二氧化碳重整的热力学和动力学方面。系统将有关所用催化系统的类型和该方法的商业实现的特定特征的数据进行系统化。甲烷二氧化碳重整的最佳温度和压力范围分别为700–900°C和2-4 MPa。对已发表的有关干重整催化剂的活性和稳定性的数据的详细分析表明,影响催化剂活性及其抗结焦性的关键因素是载体性质与活性金属相组成之间的平衡。例如,载体的酸碱性质决定了金属与表面的结合强度,通过防止活性组分颗粒的烧结,可以影响催化剂的活性及其稳定性。最广泛的载体是硅和铝的氧化物以及锆和钛的硅酸盐。通过引入掺杂添加剂(例如铈,钙和镁氧化物)来控制其酸度。碱过渡金属(Ni和Co)和贵金属(Rh,Ru,Pd,Pt和Ir)以及包含两种类型位点的双金属系统都可以用作活性相。限制甲烷的二氧化碳重整的实际使用和结垢的主要问题是由于载体的焦化和活性组分颗粒的烧结而使催化剂失活。通过引入掺杂添加剂(例如铈,钙和镁氧化物)来控制其酸度。碱过渡金属(Ni和Co)和贵金属(Rh,Ru,Pd,Pt和Ir)以及包含两种类型位点的双金属系统都可以用作活性相。限制甲烷的二氧化碳重整的实际使用和结垢的主要问题是由于载体的焦化和活性组分颗粒的烧结而使催化剂失活。通过引入掺杂添加剂(例如铈,钙和镁氧化物)来控制其酸度。碱过渡金属(Ni和Co)和贵金属(Rh,Ru,Pd,Pt和Ir)以及包含两种类型位点的双金属系统都可以用作活性相。限制甲烷的二氧化碳重整的实际使用和结垢的主要问题是由于载体的焦化和活性组分颗粒的烧结而使催化剂失活。
更新日期:2020-07-17
down
wechat
bug