当前位置: X-MOL 学术Environ. Earth Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Water leakage susceptible areas in loess multi-arch tunnel operation under the lateral recharge conditions
Environmental Earth Sciences ( IF 2.8 ) Pub Date : 2020-07-18 , DOI: 10.1007/s12665-020-09083-3
Zhengjun Mao , Xiaokang Wang , Ning An , Xiaojun Li , Rongyu Wei , Yaqiong Wang , Hao Wu

In this study, the water leakage susceptible areas in a loess multi-arch tunnel were examined, providing a basis for the prevention and control of water leakage disease during the operation periods of multi-arch tunnels in loess areas. Through the field investigation of the leakage in loess multi-arch tunnel, the leakage mainly focuses on three joints: construction joints, expansion joints, and settlement joints. The spatial distribution of the leaking part in the tunnel is summarized and abstractly into three types: annular cracks, longitudinal cracks and full longitudinal cracks + circumferential cracks. By setting up different number of annular and longitudinal cracks, a total of 20 combinations were designed. This paper sets three kinds of working conditions, including 40 and 60 m of reinforcement water head and 60 m of no reinforcement water head, considering groundwater lateral recharge conditions. Using the midas/GTS geo-technical analysis system software, 3D numerical simulations were conducted to determine the distributions of the total water head and water pressure in cracks for all the combinations of water leakage positions under different working conditions and to analyze the variations in the seepage field of the surrounding rock. Based on the areas where the total water head and water pressure in the cracks sharply changed, the water leakage susceptible areas were determined. The rationality and reliability of the method were verified by a comparison with the results of a field investigation.

中文翻译:

黄土多拱隧道侧向补给条件下渗水敏感区

本研究对黄土多层拱形隧道渗水敏感区进行了研究,为黄土多层拱形隧道运营期的渗水病防治提供了依据。通过对黄土多拱隧道渗漏的现场调查,发现渗漏主要集中在施工缝,伸缩缝和沉降缝三个缝上。总结了隧道漏水部位的空间分布,并将其抽象为三种类型:环形裂缝,纵向裂缝和全纵向裂缝+周向裂缝。通过设置不同数量的环形和纵向裂纹,总共设计了20种组合。本文设定了三种工作条件,考虑到地下水的侧向补给条件,包括40和60 m的补给水头和60 m的无补给水头。使用Midas / GTS岩土技术分析系统软件,进行了3​​D数值模拟,以确定在不同工作条件下所有漏水位置组合的总水头和裂缝中水压的分布,并分析了裂缝中水的变化。围岩的渗流场。根据裂缝中总水头和水压急剧变化的区域,确定漏水敏感​​区域。通过与现场调查结果的比较,验证了该方法的合理性和可靠性。使用Midas / GTS岩土技术分析系统软件,进行了3​​D数值模拟,以确定在不同工作条件下所有漏水位置组合的总水头和裂缝中水压的分布,并分析了裂缝中水的变化。围岩的渗流场。根据裂缝中总水头和水压急剧变化的区域,确定漏水敏感​​区域。通过与现场调查结果的比较,验证了该方法的合理性和可靠性。使用Midas / GTS岩土技术分析系统软件,进行了3​​D数值模拟,以确定在不同工作条件下所有漏水位置组合的总水头和裂缝中水压的分布,并分析了裂缝中水的变化。围岩的渗流场。根据裂缝中总水头和水压急剧变化的区域,确定漏水敏感​​区域。通过与现场调查结果的比较,验证了该方法的合理性和可靠性。进行了3D数值模拟,以确定在不同工作条件下所有漏水位置的组合中裂缝中总水头和水压的分布,并分析了围岩渗流场的变化。根据裂缝中总水头和水压急剧变化的区域,确定漏水敏感​​区域。通过与现场调查结果的比较,验证了该方法的合理性和可靠性。进行了3D数值模拟,以确定在不同工作条件下所有漏水位置的组合中裂缝中总水头和水压的分布,并分析了围岩渗流场的变化。根据裂缝中总水头和水压急剧变化的区域,确定漏水敏感​​区域。通过与现场调查结果的比较,验证了该方法的合理性和可靠性。
更新日期:2020-07-18
down
wechat
bug